
116	 CHAPTER 4  Algorithms: The Basic Methods

4.5  MINING ASSOCIATION RULES
Association rules are like classification rules. You could find them in the same way,
by executing a divide-and-conquer rule-induction procedure for each possible
expression that could occur on the right side of the rule. However, not only might
any attribute occur on the right side with any possible value, but a single association
rule often predicts the value of more than one attribute. To find such rules, you would
have to execute the rule-induction procedure once for every possible combination
of attributes, with every possible combination of values, on the right side. That
would result in an enormous number of association rules, which would then have
to be pruned down on the basis of their coverage (the number of instances that they
predict correctly) and their accuracy (the same number expressed as a proportion of
the number of instances to which the rule applies). This approach is quite infeasible.
(Note that, as we mentioned in Section 3.4, what we are calling coverage is often
called support and what we are calling accuracy is often called confidence.)

Instead, we capitalize on the fact that we are only interested in association rules
with high coverage. We ignore, for the moment, the distinction between the left
and right sides of a rule and seek combinations of attribute–value pairs that have
a prespecified minimum coverage. These are called item sets: An attribute–value
pair is an item. The terminology derives from market basket analysis, in which the
items are articles in your shopping cart and the supermarket manager is looking
for associations among these purchases.

Item Sets
The first column of Table 4.10 shows the individual items for the weather data in
Table 1.2 (page 10), with the number of times each item appears in the dataset given
at the right. These are the one-item sets. The next step is to generate the two-item
sets by making pairs of the one-item sets. Of course, there is no point in generating
a set containing two different values of the same attribute (such as outlook = sunny
and outlook = overcast) because that cannot occur in any actual instance.

Assume that we seek association rules with minimum coverage 2; thus, we
discard any item sets that cover fewer than two instances. This leaves 47 two-item
sets, some of which are shown in the second column along with the number of times
they appear. The next step is to generate the three-item sets, of which 39 have a
coverage of 2 or greater. There are six four-item sets, and no five-item sets—for this
data, a five-item set with coverage 2 or greater could only correspond to a repeated
instance. The first rows of the table, for example, show that there are five days when
outlook = sunny, two of which have temperature = hot, and, in fact, on both of those
days humidity = high and play = no as well.

	 � 117

Ta
bl

e
4

.1
0

 I
te

m
 S

et
s

fo
r

W
ea

th
er

 D
at

a
w

it
h

C
ov

er
ag

e
2

 o
r

G
re

at
er

O
ne

-I
te

m
 S

et
s

T
w

o
-I

te
m

 S
et

s
T

hr
ee

-I
te

m
 S

et
s

Fo
ur

-I
te

m
 S

et
s

1
ou

tlo
ok

 =
 s

un
ny

5
ou

tlo
ok

 =
 s

un
ny

te

m
pe

ra
tu

re
 =

 m
ild

2
ou

tlo
ok

 =
 s

un
ny

te

m
pe

ra
tu

re
 =

 h
ot

hu

m
id

ity
 =

 h
ig

h

2
ou

tlo
ok

 =
 s

un
ny

te

m
pe

ra
tu

re
 =

 h
ot

hu

m
id

ity
 =

 h
ig

h
pl

ay
 =

 n
o

2

2
ou

tlo
ok

 =
 o

ve
rc

as
t

4
ou

tlo
ok

 =
 s

un
ny

te

m
pe

ra
tu

re
 =

 h
ot

2
ou

tlo
ok

 =
 s

un
ny

te

m
pe

ra
tu

re
 =

 h
ot

pl

ay
 =

 n
o

2
ou

tlo
ok

 =
 s

un
ny

hu

m
id

ity
 =

 h
ig

h
w

in
dy

 =
 f

al
se

pl

ay
 =

 n
o

2

3
ou

tlo
ok

 =
 r

ai
ny

5
ou

tlo
ok

 =
 s

un
ny

hu

m
id

ity
 =

 n
or

m
al

2
ou

tlo
ok

 =
 s

un
ny

hu

m
id

ity
 =

 n
or

m
al

pl

ay
 =

 y
es

2
ou

tlo
ok

 =
 o

ve
rc

as
t

te
m

pe
ra

tu
re

 =
 h

ot

w
in

dy
 =

 f
al

se

pl
ay

 =
 y

es

2

4
te

m
pe

ra
tu

re
 =

 c
oo

l
4

ou
tlo

ok
 =

 s
un

ny

hu
m

id
ity

 =
 h

ig
h

3
ou

tlo
ok

 =
 s

un
ny

hu

m
id

ity
 =

 h
ig

h
w

in
dy

 =
 f

al
se

2
ou

tlo
ok

 =
 r

ai
ny

te

m
pe

ra
tu

re
 =

 m
ild

w

in
dy

 =
 f

al
se

pl

ay
 =

 y
es

2

5
te

m
pe

ra
tu

re
 =

 m
ild

6
ou

tlo
ok

 =
 s

un
ny

w

in
dy

 =
 t

ru
e

2
ou

tlo
ok

 =
 s

un
ny

hu

m
id

ity
 =

 h
ig

h
pl

ay
 =

 n
o

3
ou

tlo
ok

 =
 r

ai
ny

hu

m
id

ity
 =

 n
or

m
al

w

in
dy

 =
 f

al
se

pl

ay
 =

 y
es

2

6
te

m
pe

ra
tu

re
 =

 h
ot

4
ou

tlo
ok

 =
 s

un
ny

w

in
dy

 =
 f

al
se

3
ou

tlo
ok

 =
 s

un
ny

w

in
dy

 =
 f

al
se

pl

ay
 =

 n
o

2
te

m
pe

ra
tu

re
 =

 c
oo

l
hu

m
id

ity
 =

 n
or

m
al

w

in
dy

 =
 f

al
se

pl

ay
 =

 y
es

2

7
hu

m
id

ity
 =

 n
or

m
al

7
ou

tlo
ok

 =
 s

un
ny

pl

ay
 =

 y
es

2
ou

tlo
ok

 =
 o

ve
rc

as
t

te
m

pe
ra

tu
re

 =
 h

ot

w
in

dy
 =

 f
al

se

2

8
hu

m
id

ity
 =

 h
ig

h
7

ou
tlo

ok
 =

 s
un

ny

pl
ay

 =
 n

o
3

ou
tlo

ok
 =

 o
ve

rc
as

t
te

m
pe

ra
tu

re
 =

 h
ot

pl

ay
 =

 y
es

2

C
on

ti
nu

ed
C

on
ti

nu
ed

118	

O
ne

-I
te

m
 S

et
s

T
w

o
-I

te
m

 S
et

s
T

hr
ee

-I
te

m
 S

et
s

Fo
ur

-I
te

m
 S

et
s

9
w

in
dy

 =
 t

ru
e

6
ou

tlo
ok

 =
 o

ve
rc

as
t

te
m

pe
ra

tu
re

 =
 h

ot
2

ou
tlo

ok
 =

 o
ve

rc
as

t
hu

m
id

ity
 =

 n
or

m
al

pl

ay
 =

 y
es

2

10
w

in
dy

 =
 f

al
se

8
ou

tlo
ok

 =
 o

ve
rc

as
t

hu
m

id
ity

 =
 n

or
m

al
2

ou
tlo

ok
 =

 o
ve

rc
as

t
hu

m
id

ity
 =

 h
ig

h
pl

ay
 =

 y
es

2

11
pl

ay
 =

 y
es

9
ou

tlo
ok

 =
 o

ve
rc

as
t

hu
m

id
ity

 =
 h

ig
h

2
ou

tlo
ok

 =
 o

ve
rc

as
t

w
in

dy
 =

 t
ru

e
pl

ay
 =

 y
es

2

12
pl

ay
 =

 n
o

5
ou

tlo
ok

 =
 o

ve
rc

as
t

w
in

dy
 =

 t
ru

e
2

ou
tlo

ok
 =

 o
ve

rc
as

t
w

in
dy

 =
 f

al
se

pl

ay
 =

 y
es

2

13
ou

tlo
ok

 =
 o

ve
rc

as
t

w
in

dy
 =

 f
al

se
2

ou
tlo

ok
 =

 r
ai

ny

te
m

pe
ra

tu
re

 =
 c

oo
l

hu
m

id
ity

 =
 n

or
m

al

2

…
…

…
38

hu
m

id
ity

 =
 n

or
m

al

w
in

dy
 =

 f
al

se
4

hu
m

id
ity

 =
 n

or
m

al

w
in

dy
 =

 f
al

se

pl
ay

 =
 y

es

4

39
hu

m
id

ity
 =

 n
or

m
al

pl

ay
 =

 y
es

6
hu

m
id

ity
 =

 h
ig

h
w

in
dy

 =
 f

al
se

pl

ay
 =

 n
o

2

40
hu

m
id

ity
 =

 h
ig

h
w

in
dy

 =
 t

ru
e

3

…
…

47
w

in
dy

 =
 f

al
se

pl

ay
 =

 n
o

2

Ta
bl

e
4

.1
0

 I
te

m
 S

et
s

fo
r

W
ea

th
er

 D
at

a
w

it
h

C
ov

er
ag

e
or

 G
re

at
er

 (
C

on
ti

nu
ed

)

	 4.5  Mining Association Rules� 119

Association Rules
Shortly we will explain how to generate these item sets efficiently. But first let us
finish the story. Once all item sets with the required coverage have been generated,
the next step is to turn each into a rule, or a set of rules, with at least the specified
minimum accuracy. Some item sets will produce more than one rule; others will
produce none. For example, there is one three-item set with a coverage of 4 (row
38 of Table 4.10):

humidity = normal, windy = false, play = yes

This set leads to seven potential rules:

If humidity = normal and windy = false then play = yes  	 4/4
If humidity = normal and play = yes then windy = false    4/6
If windy = false and play = yes then humidity = normal  	 4/6
If humidity = normal then windy = false and play = yes  	 4/7
If windy = false then humidity = normal and play = yes  	 4/8
If play = yes then humidity = normal and windy = false  	 4/9
If – then humidity = normal and windy = false and play = yes   4/14

The figures at the right in this list show the number of instances for which all
three conditions are true—that is, the coverage—divided by the number of instances
for which the conditions in the antecedent are true. Interpreted as a fraction,
they represent the proportion of instances on which the rule is correct—that is,
its accuracy. Assuming that the minimum specified accuracy is 100%, only the
first of these rules will make it into the final rule set. The denominators of the
fractions are readily obtained by looking up the antecedent expression in Table
4.10 (although some are not shown in the table). The final rule above has no
conditions in the antecedent, and its denominator is the total number of instances
in the dataset.

Table 4.11 shows the final rule set for the weather data, with minimum cover-
age 2 and minimum accuracy 100%, sorted by coverage. There are 58 rules, 3
with coverage 4, 5 with coverage 3, and 50 with coverage 2. Only 7 have two
conditions in the consequent, and none has more than two. The first rule comes
from the item set described previously. Sometimes several rules arise from the
same item set. For example, rules 9, 10, and 11 all arise from the four-item set in
row 6 of Table 4.10:

temperature = cool, humidity = normal, windy = false, play = yes

which has coverage 2. Three subsets of this item set also have coverage 2:

temperature = cool, windy = false
temperature = cool, humidity = normal, windy = false
temperature = cool, windy = false, play = yes

and these lead to rules 9, 10, and 11, all of which are 100% accurate (on the training
data).

120	 CHAPTER 4  Algorithms: The Basic Methods

Table 4.11  Association Rules for Weather Data

Association Rule Coverage Accuracy

1 humidity = normal
windy = false ⇒ play = yes

4 100%

2 temperature = cool ⇒
humidity = normal

4 100%

3 outlook = overcast ⇒ play = yes 4 100%
4 temperature = cool

play = yes ⇒ humidity = normal
3 100%

5 outlook = rainy
windy = false ⇒ play = yes

3 100%

6 outlook = rainy
play = yes ⇒ windy = false

3 100%

7 outlook = sunny
humidity = high ⇒ play = no

3 100%

8 outlook = sunny
play = no ⇒ humidity = high

3 100%

9 temperature = cool
windy = false ⇒ humidity = normal
play = yes

2 100%

10 temperature = cool
humidity = normal
windy = false ⇒ play = yes

2 100%

11 temperature = cool
windy = false
play = yes ⇒ humidity = normal

2 100%

12 outlook = rainy
humidity = normal
windy = false ⇒ play = yes

2 100%

13 outlook = rainy
humidity = normal
play = yes ⇒ windy = false

2 100%

14 outlook = rainy
temperature = mild
windy = false ⇒ play = yes

2 100%

15 outlook = rainy
temperature = mild
play = yes ⇒ windy = false

2 100%

16 temperature = mild
windy = false
play = yes ⇒ outlook = rainy

2 100%

17 outlook = overcast
temperature = hot ⇒ windy = false
play = yes

2 100%

18 outlook = overcast
windy = false ⇒ temperature = hot
play = yes

2 100%

	 4.5  Mining Association Rules� 121

Association Rule Coverage Accuracy

19 temperature = hot
play = yes ⇒ outlook = overcast
windy = false

2 100%

20 outlook = overcast
temperature = hot
windy = false ⇒ play = yes

2 100%

21 outlook = overcast
temperature = hot
play = yes ⇒ windy = false

2 100%

22 outlook = overcast
windy = false
play = yes ⇒ temperature = hot

2 100%

23 temperature = hot
windy = false
play = yes ⇒ outlook = overcast

2 100%

24 windy = false
play = no ⇒ outlook = sunny
humidity = high

2 100%

25 outlook = sunny
humidity = high
windy = false ⇒ play = no

2 100%

26 outlook = sunny
windy = false
play = no ⇒ humidity = high

2 100%

27 humidity = high
windy = false
play = no ⇒ outlook = sunny

2 100%

28 outlook = sunny
temperature = hot ⇒
humidity = high
play = no

2 100%

29 temperature = hot
play = no ⇒ outlook = sunny
humidity = high

2 100%

30 outlook = sunny
temperature = hot
humidity = high ⇒ play = no

2 100%

31 outlook = sunny
temperature = hot
play = no ⇒ humidity = high

2 100%

… … … …
58 outlook = sunny

temperature = hot ⇒
humidity = high

2 100%

Table 4.11  Continued

122	 CHAPTER 4  Algorithms: The Basic Methods

Generating Rules Efficiently
We now consider in more detail an algorithm for producing association rules with
specified minimum coverage and accuracy. There are two stages: generating item
sets with the specified minimum coverage, and from each item set determining the
rules that have the specified minimum accuracy.

The first stage proceeds by generating all one-item sets with the given minimum
coverage (the first column of Table 4.10) and then using this to generate the two-item
sets (second column), three-item sets (third column), and so on. Each operation
involves a pass through the dataset to count the items in each set, and after the pass
the surviving item sets are stored in a hash table—a standard data structure that
allows elements stored in it to be found very quickly. From the one-item sets, can-
didate two-item sets are generated, and then a pass is made through the dataset,
counting the coverage of each two-item set; at the end the candidate sets with less
than minimum coverage are removed from the table. The candidate two-item sets
are simply all of the one-item sets taken in pairs, because a two-item set cannot have
the minimum coverage unless both its constituent one-item sets have the minimum
coverage, too. This applies in general: A three-item set can only have the minimum
coverage if all three of its two-item subsets have minimum coverage as well, and
similarly for four-item sets.

An example will help to explain how candidate item sets are generated. Suppose
there are five three-item sets—(A B C), (A B D), (A C D), (A C E), and (B C D)—
where, for example, A is a feature such as outlook = sunny. The union of the first
two, (A B C D), is a candidate four-item set because its other three-item subsets (A
C D) and (B C D) have greater than minimum coverage. If the three-item sets are
sorted into lexical order, as they are in this list, then we need only consider pairs
with the same first two members. For example, we do not consider (A C D) and (B
C D) because (A B C D) can also be generated from (A B C) and (A B D), and if
these two are not candidate three-item sets, then (A B C D) cannot be a candidate
four-item set. This leaves the pairs (A B C) and (A B D), which we have already
explained, and (A C D) and (A C E). This second pair leads to the set (A C D E)
whose three-item subsets do not all have the minimum coverage, so it is discarded.
The hash table assists with this check: We simply remove each item from the set in
turn and check that the remaining three-item set is indeed present in the hash table.
Thus, in this example there is only one candidate four-item set, (A B C D). Whether
or not it actually has minimum coverage can only be determined by checking the
instances in the dataset.

The second stage of the procedure takes each item set and generates rules from
it, checking that they have the specified minimum accuracy. If only rules with a
single test on the right side were sought, it would be simply a matter of considering
each condition in turn as the consequent of the rule, deleting it from the item set,
and dividing the coverage of the entire item set by the coverage of the resulting
subset—obtained from the hash table—to yield the accuracy of the corresponding
rule. Given that we are also interested in association rules with multiple tests in the

	 4.5  Mining Association Rules� 123

consequent, it looks like we have to evaluate the effect of placing each subset of the
item set on the right side, leaving the remainder of the set as the antecedent.

This brute-force method will be excessively computation intensive unless item
sets are small, because the number of possible subsets grows exponentially with the
size of the item set. However, there is a better way. We observed when describing
association rules in Section 3.4 that if the double-consequent rule

If windy = false and play = no
	 then outlook = sunny and humidity = high

holds with a given minimum coverage and accuracy, then both single-consequent
rules formed from the same item set must also hold:

If humidity = high and windy = false and play = no
	 then outlook = sunny
If outlook = sunny and windy = false and play = no
	 then humidity = high

Conversely, if one or other of the single-consequent rules does not hold, there is
no point in considering the double-consequent one. This gives a way of building up
from single-consequent rules to candidate double-consequent ones, from double-
consequent rules to candidate triple-consequent ones, and so on. Of course, each
candidate rule must be checked against the hash table to see if it really does have
more than the specified minimum accuracy. But this generally involves checking far
fewer rules than the brute-force method. It is interesting that this way of building
up candidate (n + 1)-consequent rules from actual n-consequent ones is really just
the same as building up candidate (n + 1)-item sets from actual n-item sets, described
earlier.

Discussion
Association rules are often sought for very large datasets, and efficient algorithms
are highly valued. The method we have described makes one pass through the
dataset for each different size of item set. Sometimes the dataset is too large to
read in to main memory and must be kept on disk; then it may be worth reducing
the number of passes by checking item sets of two consecutive sizes at the same
time. For example, once sets with two items have been generated, all sets of three
items could be generated from them before going through the instance set to count
the actual number of items in the sets. More three-item sets than necessary would
be considered, but the number of passes through the entire dataset would be reduced.

In practice, the amount of computation needed to generate association rules
depends critically on the minimum coverage specified. The accuracy has less influ-
ence because it does not affect the number of passes that must be made through the
dataset. In many situations we would like to obtain a certain number of rules—say
50—with the greatest possible coverage at a prespecified minimum accuracy level.
One way to do this is to begin by specifying the coverage to be rather high and to

124	 CHAPTER 4  Algorithms: The Basic Methods

then successively reduce it, reexecuting the entire rule-finding algorithm for each
of the coverage values and repeating until the desired number of rules has been
generated.

The tabular input format that we use throughout this book, and in particular the
standard ARFF format based on it, is very inefficient for many association-rule
problems. Association rules are often used in situations where attributes are binary—
either present or absent—and most of the attribute values associated with a given
instance are absent. This is a case for the sparse data representation described in
Section 2.4; the same algorithm for finding association rules applies.

