
Rule induction with decision trees

Dr. Gonzalo Nápoles



Supervised learning

 The classification problem

 Given a set of labeled examples, build a model to determine the most

appropriate decision class for a new instance.

 The problem is supervised because the decision classes attached to

training instances are known.

 Potential applications

 Credit approval, direct marketing, fraud detection, medical diagnosis.

In general, classification models can be used in any problem where

inferring symbolic decisions is expected.

Supervised learning does not 

imply lack of automation.



The wheatear example



 An internal node denotes a test for a specific attribute, while

a branch represents an outcome of the test.

Example: temperature < 77.5

 A leaf node denotes a class label or class label distribution,

which can be observed several times.

 At each node, one attribute is chosen to split the training set

into distinct classes as much as possible.

A new case is classified by following 
a matching path to a leaf node.

Decision trees



 Top-down tree construction

 At the beginning, all training examples are at the root.

 Partition the examples by choosing one attribute each time.

 Bottom-up tree pruning

 Remove subtrees or branches, in a bottom-up manner, to improve

the estimated accuracy on new cases.

• Construction step
• Optimization step

Building decision trees



The best attribute is the one which
leads to the smallest tree.

Strategy: choose the attribute with
highest information gain.

Which is the best attribute?

 At each node, available attributes are evaluated to separate

the classes of the training examples.

 A quality function determines the goodness of each attribute

being evaluated. Typical functions are:

 information gain

 information gain ratio

 Gini index



We can use the entropy to measure the amount of 
information attached to each attribute.

Which is the best attribute?



Given a probability distribution, the 
info required to predict an event is 

the distribution’s entropy.

𝐸 𝑃 = −

𝑖

𝑝𝑖 log 𝑝𝑖

Why the Entropy measure?

 When the node is totally pure, the Entropy is zero
 When impurity is maximal, the Entropy is maximal
 Besides, the Entropy fulfils the multistage property

Which is the best attribute?



• info 𝑜𝑢𝑡𝑙𝑜𝑜𝑘 ← sunny = 𝐸 Τ2 5 , Τ3 5 = 0.971

• info 𝑜𝑢𝑡𝑙𝑜𝑜𝑘 ← overcast = 𝐸 Τ4 4 , Τ0 4 = 0.0

• info 𝑜𝑢𝑡𝑙𝑜𝑜𝑘 ← rainy = 𝐸 Τ3 5 , Τ2 5 = 0.971

info 𝑜𝑢𝑡𝑙𝑜𝑜𝑘 = Τ(5 14) × 0.971 +

Τ(4 14) × 0 + Τ(5 14) × 0.971

= 0.693

Which is the best attribute?



• info 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ← hot = 𝐸 Τ2 4 , Τ2 4 = 1.0

• info 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ← mild = 𝐸 Τ4 6 , Τ2 6 = 0.92

• info 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ← cool = 𝐸 Τ3 4 , Τ1 4 = 0.81

info 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = Τ(4 14) × 1 +

Τ(6 14) × 0.92 + Τ(4 14) × 0.81

= 0.9114

Which is the best attribute?



 Once the entropy has been calculated for each attribute, we

can compute the information gain.

gain 𝐴 = info 𝑟𝑜𝑜𝑡 − info(𝐴)

Therefore,

gain 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = info [9,5] − info(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)

= 0.94 − 0.9114 = 0.029

gain 𝑜𝑢𝑡𝑙𝑜𝑜𝑘 = info [9,5] − info(𝑜𝑢𝑡𝑙𝑜𝑜𝑘)

= 0.94 − 0.693 = 0.247

Which is the best attribute?



 The tree construction procedure is performed in a recurrent

fashion until a stopping criterion is satisfied.

 Not all leaves need to be pure (i.e. with the same decision).

Sometimes identical instances lead to different classes; this

situation is call inconsistency.

 The recursive construction process stops when the training

set cannot be split any further.

Continue splitting recursively



Function DT(Examples, Attributes, Target)

Create a root node for the tree

IF all examples belong to the same decision class

return the root node as a leaf with that decision class

END

IF the attribute set is empty

return the root node as a leaf with the most likely class

END

Stopping criteria for the recursive 
construction procedure.

Pseudocode



Function DT(Examples, Attributes, Target)

A ← best attribute in the attribute set

FOREACH value 𝑉𝑖 of A

add a branch below the current node

IF examples(𝑉𝑖) THEN

add a leaf node with the most likely class

END

DT(examples(𝑉𝑖), A, Attributes – {A})

END

Recursive construction 
procedure.

Pseudocode



 The algorithm’s performance is affected by attributes with a

large number of values (extreme case: ID code).

 The partition induced by an attribute with a large number of

values is more likely to be pure.

 Therefore, the information gain measure is biased towards choosing

attributes with a large number of values.

 This behavior may result in overfitting (selection of an attribute that

is non-optimal for solving the problem).

Further remarks



 The information gain for ID code is maximal since each leaf

node contains a single case, this it’s pure.

Further remarks



 The gain ratio is based on the information gain that reduces

its bias on high-branch attributes.

 This measure takes the number and size of branches into

account when choosing an attribute.

 This measure corrects the information gain by taking the

intrinsic information of a split into account.

Alternatives



𝑃𝑣 is the number of instances in 𝑋
such that 𝑋𝐴 = 𝑣

split 𝑋, 𝐴 = −

𝑣

𝑃𝑣
𝑋

log
𝑃𝑣
𝑋

What is different?

This measure considers the entropy of instances 
with regards to the target attribute. 

Intrinsic information



𝑠𝑝𝑙𝑖𝑡(𝑋, 𝐴) is used to normalize the 
information gain measure.

ratio 𝑋, 𝐴 =
gain 𝐴

split 𝑋, 𝐴

What is different?

The importance of an attribute decreases as 
intrinsic information gets larger!

Intrinsic information



 It may overcompensate since it might choose an attribute

just because its intrinsic information is very low.

 As alternative, we can do the following:

 Step#1. Only consider those attributes with information gain greater

than the average gain value.

 Step#2. Compare preselected attributes according to the gain ration

and select th one having maximal ratio.

Other thresholding heuristic 
may be adopted.

Drawbacks of gain ratio



𝑝𝑗 is the relative frequency of class 
𝑗 at the current node.

gini 𝑋, 𝐴 = 1 −

𝑗

𝑝𝑗
2

Some features

The index will be maximum when classes are 
equally distributed, less interesting.

Another alternative: Gini index



When the node is split into 𝐾
partitions (children).

gini𝑠𝑝𝑙𝑖𝑡 𝑋, 𝐴 = 

𝑖=1

𝐾
𝑁𝑖

𝑁
gini(𝑋, 𝐴)

The index is minimized, assuming that 𝑁𝑖 and 𝑁
are the number of instances on the child node 

and the current node, respectively. 

Another alternative: Gini index



 The decision tree algorithm continues to grow a tree until it

makes no errors over the set of training data.

 This fact makes ID3 prone to overfitting. In order to reduce

overfitting, pruning is used:

 Postpruning. take a fully-grown decision tree and discard unreliable

parts, once the construction process is finished.

 Prepruning. stop growing the tree when the information becomes

unreliable. This strategy can stop too early!!

Decision tree optimization – pruning 



 Pre-pruning is based on statistical significance test

 Stop growing when there is no statistically significant association

between any attribute and the class at a particular node.

 For example, the ID3 algorithm uses the chi-squared test in

conjunction to the information gain measure:

 As a result, only statistically “significant” attributes are allowed to be

selected by the information gain procedure.

Decision tree optimization – pruning 



 Post-pruning optimizes a full tree

 Problem. some subtrees might be due to chance effects

 Post-pruning is based on two main operations:

 Subtree replacement. replaces the subtree with a single leaf.

 Subtree raising. replaces the subtree with the child one.

Pre-pruning faster than 
post-pruning.

Decision tree optimization – pruning 



Decision tree optimization – pruning 



Delete node and redistribute 

the remaining instances

Decision tree optimization – pruning 



 One approach to computing the error rates is to reserve a

portion of the available dataset for validation. The validation

set is not used during training.

 If the new error rate is grater than the error rate of a pruned

version of the tree, pruning is performed.

 Reduced error pruning can reduce overfitting, but it reduces

the amount of data available for training.

Decision tree optimization – pruning 



 The C4.5 algorithm uses statistical confidence estimates for

pruning the tree, which uses the whole dataset.

𝜇 𝐸 = 𝐸 + 𝑧
𝐸(𝐸 − 1)

𝑁

Upper limit of the error 
confidence interval

where 𝐸 is the error attached to the leaf, z is the z-score 
and 𝑁 is the number of tested instances. 

Statistical pruning


