REGRESSION & CLASSIFICATION

Video Lectures by Chris Emmery (MSc)

GOALS OF DATA MINING

- Investigating, describing, and sanitizing data.
- Finding patterns in large data sets.
- Through the application and evaluation of algorithms: classification, clustering, regression, rule mining, outlier detection, etc.

THIS LECTURE

Finding patterns through prediction using:

- Regression.
- Classification.

WHAT MAKES PREDICTION POSSIBLE?

Associations between a feature (x) and a target (y).

If:

- Numerical: correlation.
- Categorical: mutual information.

Given X and $y \rightarrow$ supervised learning. Given only $X \rightarrow$ unsupervised learning.

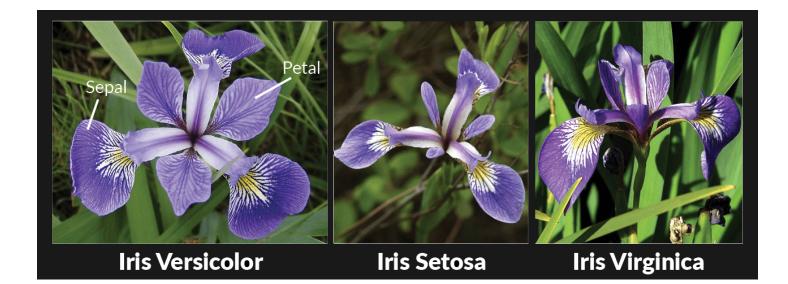
CORRELATION

Pearson correlation:

$$r_{xy} = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2} \cdot \sqrt{\sum_{i=1}^n (y_i - ar{y})^2}}$$

... where *n* is sample size, *x* a feature, *y* a target (or feature), indexed by *i*, and \bar{x} and $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} x_i$ or y_i (i.e. the mean).

IRIS DATASET

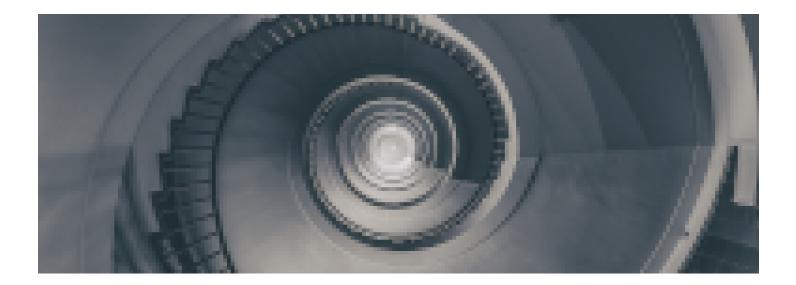


IRIS CORRELATION

IRIS CORRELATION II

EXPECTATIONS FROM CORRELATIONS

REGRESSION



CAN WE MODEL THIS AS A FUNCTION?

 $f(X) = a \cdot x + b$ or $Y = eta_0 + eta_1 \cdot X$

EXAMPLE

city	students (X)	alcohol (Y)	$(X-ar{X})^2$	$(X-ar{X})\cdot(Y-ar{Y})$
Tilburg	26	41	$(26 - 18)^2 = 64$	(26 - 18) * (41 - 29) = 96
Eindhoven	21	37	$(21 - 18)^2 = 9$	(21 - 18) * (37 - 29) = 24
Wageningen	6	9	$(06 - 18)^2 = 144$	(06 - 18) * (09 - 29) = 240
\sum	53	87	217	360
• $ar{X} = 53/3 pprox 18, ar{Y} = 87/3 = 29$				
• $eta_1 = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sum_{i=1}^n (x_i - ar{x})^2} = rac{360}{217} pprox 1.66$				
$ullet \ eta_0 = ar{Y} - eta_1 \cdot ar{X} = 29 - 1.66 \cdot 18 = -0.88$				
• $\hat{y} = eta_0 + eta_1 \cdot X = -0.88 + 1.66 \cdot X$				

Sources: RIVM, infogram (2016, 2020)

RESULT

$egin{aligned} \mathbf{EVALUATION} \ \mathbf{RMSE} &= \sqrt{rac{\sum_{i=1}^{N} (\hat{y}_i - y_i)^2}{N}} \ &= \sqrt{((42.28 - 41)^2 + (33.98 - 37)^2 + (9.08 - 9)^2)} = 3.28 \ &R^2 = 1 - = rac{MSE(f)}{MSE(ext{mean})} = 0.982 \end{aligned}$

CLASSIFICATION

REGRESSION VS. CLASSIFICATION

- With regression our *y* is numerical.
- With classification our *y* is categorical.

LOGISTIC REGRESSION

$$p(x)=rac{1}{1+e^{-(eta_0+eta_1\cdot x)}}
onumber \ g(p(x))=\ln\Bigl(rac{p(x)}{1-p(x)}\Bigr)=eta_0+eta_1\cdot x$$

LOGISTIC REGRESSION EXPLAINED

k-NEAREST NEIGHBORS

DISTANCES

- Manhattan Distance: $\sum_{i=1}^n |x_i y_i|$
- Euclidean Distance: $\sqrt{\sum_{i=1}^{n} (x_i y_i)^2}$
- Minkowski Distance: $(\sum_{i=1}^n |x_i y_i|^p)^{\frac{1}{p}}$
- Hamming Distance: (1011101 \rightarrow 1001001 = 2)

More next video!