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TODAY'S LECTURE
Representing text as vectors.
Binary vectors for Decision Tree classi�cation.
Using Vector Spaces and weightings.
Document classi�cation using -NN.k



HOW IS THIS DIFFERENT THAN BEFORE?
Numbers are numbers. Their scales and distributions
might be different; the information leaves little to
interpretation.
Language is complex:

Representing language is complex.
Mathematically interpreting language is complex.
Inferring knowledge from language is complex.
Understanding language is complex.



NOISY LANGUAGE

Just net�ixed pixels, best time ever lol -
1/5



LANGUAGE AS A STRING
title,director,year,score,budget,gross,plot 

"Dunkirk","Christopher Nolan",2017,8.4,100000000,183836652,"Allied soldiers 

"Interstellar","Christopher Nolan",2014,8.6,165000000,187991439,"A team of e

"Inception","Christopher Nolan",2010,8.8,160000000,292568851,"A thief, who s

"The Prestige","Christopher Nolan",2006,8.5,40000000,53082743,"After a tragi

"Memento","Christopher Nolan",2000,8.5,9000000,25530884,"A man juggles searc



TEXT TO VECTORS



CONVERTING TO NUMBERS
d = the cat sat on the mat → = ⟨?⟩d ⃗ 



WORDS AS FEATURES
 d = the cat sat on the mat →
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Bag-of-Words Representation



DOCUMENTS AS INSTANCES
 

 

= the cat sat on the matd0

= my cat sat on my catd1
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DOCUMENTS * TERMS

V = [ ]cat mat my on sat the

X = [ ]
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DOCUMENT SIMILARITY
Wikipedia articles:

data language learning mining text vision

1 0 1 0 0 1 CV

1 1 1 0 1 0 NLP

1 0 1 1 1 0 TM
CV = Computer vision
NLP = Natural Language Processing
TM = Text Mining

y



DOCUMENT SIMILARTY - JACCARD
COEFFICIENT

 
 

 
 

= ⟨1, 0, 1, 0, 0, 1⟩d0

= ⟨1, 1, 1, 0, 1, 0⟩d1

= ⟨1, 0, 1, 1, 1, 0⟩d2

J( , ) = 2/5 = 0.4d0 d1

J( , ) = 2/5 = 0.4d0 d2

J( , ) = 3/5 = 0.6d1 d2

J(A,B) =
|A∩B|

|A∪B|

words in A and B (intersection) /
words in A or B (union)



DECISION TREES (ID3)



CLASSIFICATION RULES
data language learning mining text vision

1 0 1 0 0 1 CV

1 1 1 0 1 0 NLP

1 0 1 1 1 0 TM

y

if 'vision' in d: 

    label = 'CV'

else: 

  if 'language' in d: 

    label = 'NLP' 

  else: 

    label = 'TM'



INFERRING RULES (DECISIONS) BY
INFORMATION GAIN



INFERRING RULES (DECISIONS) BY
INFORMATION GAIN



INFERRING RULES (DECISIONS) BY
INFORMATION GAIN

spam ham total
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ID3 ALGORITHM
Feature (word) with highest Information Gain will be
split on �rst.
Instances divided over both sides calculations will be
repeated on leftovers (recursion).
If all leftover instances belong to one class, make
decision.
Create more and more rules until some stopping
criterion.

More info: ,  and .here here here

http://www.saedsayad.com/decision_tree.htm
http://www.cs.miami.edu/home/geoff/Courses/COMP6210-10M/Content/DecisionTrees.shtml
https://stackoverflow.com/questions/1859554/what-is-entropy-and-information-gain


WORDS IN VECTOR SPACES



BINARY VS. FREQUENCY
(+) Binary is a very compact representation (in terms of
memory).
(+) Algorithms like Decision Trees have a very straight-
forward and compact structure.
(-) Binary says very little about the weight of each word
(feature).
(-) We can't use more advanced algorithms that work
with Vector Spaces.



TERM FREQUENCIES - SOME NOTATION
Let  be a set of documents, and 

 (previously ) a set of index terms for 
.

Each document  can be represented as a frequency
vector:

where  denotes the frequency of term  for
document .

Thus,  would be the word length of some document .

D = { , , … , } d1 d2 dN

T = { , , … , }t1 t2 tM V

D

∈ Ddi

= ⟨tf( , ), … , tf( , )⟩d ⃗ 
i t1 di tM di

tf(t, d) ∈ Ttj

di

∑J
j=1 dj d



TERM FREQUENCIES
 

 

= the cat sat on the matd0

= my cat sat on my catd1
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TERM FREQUENCIES?

 less important than ,
but also ?
Information Theory to the rescue!

Notice +1 smoothing to avoid 

d0 = 'natural-language-processing.wiki' 

d1 = 'information-retrieval.wiki' 

d2 = 'artificial-intelligence.wiki' 

d3 = 'machine-learning.wiki' 

d4 = 'text-mining.wiki' 

d5 = 'computer-vision.wiki'

t = [ ]learning
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log(0) = −inf



SOME REMAINING PROBLEMS
The longer a document, the higher the probability a
term will occur often, and will thus have more weight.
Rare terms should actually be informative, especially if
they occur amongst few documents.

If  and  both have  in their
vectors, and all the other documents do not 
strong similarty.

d1 d2 cross-validation

→

Latter: Document Frequency



(INVERSE) DOCUMENT FREQUENCY

=idft logb
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PUTTING IT TOGETHER:  WEIGHTING

learning text language intelligence

0 5  0.32 1 10 0

1 2 21  0.0 6 0

2 0 3 0 1  0.33

tf ∗ idf

= log(tf(t, d) + 1) ⋅wt,d logb
N

dft

d

→

→

→





NORMALIZING VECTOR REPRESENTATIONS
We �xed the global information per 
instance.
Despite , we still don't account for the length of
documents (i.e. the amount of words in total).
Why is this an issue?

document ∗ term

tf ∗ idf



-NEAREST NEIGHBOURSk



EUCLIDEAN DISTANCE

d( , ) =x⃗  y ⃗  ( −∑
i=1

n

x⃗ i y ⃗ i)
2

− −−−−−−−−−

√

Documents with many words are far away.



 NORMALIZATIONℓ2

|| | =x⃗ |2 ∑
i

x
2
i

− −−−−
√

Divide all feature values by norm.



COSINE SIMILARITY
∙ = = + + … +a⃗  b ⃗  ∑n

i=1 a⃗ ib ⃗ 
i a⃗ 1b ⃗ 

1 a⃗ 2b ⃗ 
2 a⃗ nb ⃗ 

n

Under the  norm only (otherwise
normalize vectors before)!

ℓ2



USING SIMILARITY IN -NN
Store the complete training matrix  in memory.
Calculate cosine / euclidean metric between a given 
and all .
Choose the  vectors from  with the highest
similarity to .
Look up the labels for these  vectors, take majority
label  this is the classi�cation.

k

Xtrain

x⃗ test

∈x⃗ train Xtrain

k Xtrain

x⃗ test

k

→



AUGMENTATIONS TO -NN
Use different metrics.
Weight labels by:

Frequency (majority preferred).
Inverse frequency (rarer preferred).
Distance (closer instances count heavier).

k

Weightings avoid ties!


