
WORKING WITH TEXT DATA - PART I

Practical Lectures
by Chris Emmery (MSc)

https://twitter.com/_cmry
https://github.com/cmry

TODAY'S LECTURE
Representing text as vectors.
Binary vectors for Decision Tree classi�cation.
Using Vector Spaces and weightings.
Document classi�cation using -NN.k

HOW IS THIS DIFFERENT THAN BEFORE?
Numbers are numbers. Their scales and distributions
might be different; the information leaves little to
interpretation.
Language is complex:

Representing language is complex.
Mathematically interpreting language is complex.
Inferring knowledge from language is complex.
Understanding language is complex.

NOISY LANGUAGE

Just net�ixed pixels, best time ever lol -
1/5

LANGUAGE AS A STRING
title,director,year,score,budget,gross,plot

"Dunkirk","Christopher Nolan",2017,8.4,100000000,183836652,"Allied soldiers

"Interstellar","Christopher Nolan",2014,8.6,165000000,187991439,"A team of e

"Inception","Christopher Nolan",2010,8.8,160000000,292568851,"A thief, who s

"The Prestige","Christopher Nolan",2006,8.5,40000000,53082743,"After a tragi

"Memento","Christopher Nolan",2000,8.5,9000000,25530884,"A man juggles searc

TEXT TO VECTORS

CONVERTING TO NUMBERS
d = the cat sat on the mat → = ⟨?⟩d ⃗

WORDS AS FEATURES
 d = the cat sat on the mat →

[]
cat

1

mat

1

on

1

sat

1

the

1

Bag-of-Words Representation

DOCUMENTS AS INSTANCES

= the cat sat on the matd0

= my cat sat on my catd1

⎡

⎣
⎢

cat

1

1

mat

1

0

my

0

1

on

1

1

sat

1

1

the

1

0

⎤

⎦
⎥

DOCUMENTS * TERMS

V = []cat mat my on sat the

X = []
1

1

1

0

0

1

1

1

1

1

1

0

DOCUMENT SIMILARITY
Wikipedia articles:

data language learning mining text vision

1 0 1 0 0 1 CV

1 1 1 0 1 0 NLP

1 0 1 1 1 0 TM
CV = Computer vision
NLP = Natural Language Processing
TM = Text Mining

y

DOCUMENT SIMILARTY - JACCARD
COEFFICIENT

= ⟨1, 0, 1, 0, 0, 1⟩d0

= ⟨1, 1, 1, 0, 1, 0⟩d1

= ⟨1, 0, 1, 1, 1, 0⟩d2

J(,) = 2/5 = 0.4d0 d1

J(,) = 2/5 = 0.4d0 d2

J(,) = 3/5 = 0.6d1 d2

J(A,B) =
|A∩B|

|A∪B|

words in A and B (intersection) /
words in A or B (union)

DECISION TREES (ID3)

CLASSIFICATION RULES
data language learning mining text vision

1 0 1 0 0 1 CV

1 1 1 0 1 0 NLP

1 0 1 1 1 0 TM

y

if 'vision' in d:

 label = 'CV'

else:

 if 'language' in d:

 label = 'NLP'

 else:

 label = 'TM'

INFERRING RULES (DECISIONS) BY
INFORMATION GAIN

INFERRING RULES (DECISIONS) BY
INFORMATION GAIN

INFERRING RULES (DECISIONS) BY
INFORMATION GAIN

spam ham total

free 0 1 3 4

1 4 1 5

E(free, Y) = P(c)E(c)∑
c∈Y

E(free=0, Y) = −(⋅) − (⋅)
1

4
log2

1

4

3

4
log2

3

4

E(free=1, Y) = −(⋅) ⋅ −(⋅)
4

5
log2

4

5

1

5
log2

1

5

E(free, Y) = ⋅ 0.811 + ⋅ 0.722 = 0.762
4

9

5

9

ID3 ALGORITHM
Feature (word) with highest Information Gain will be
split on �rst.
Instances divided over both sides calculations will be
repeated on leftovers (recursion).
If all leftover instances belong to one class, make
decision.
Create more and more rules until some stopping
criterion.

More info: , and .here here here

http://www.saedsayad.com/decision_tree.htm
http://www.cs.miami.edu/home/geoff/Courses/COMP6210-10M/Content/DecisionTrees.shtml
https://stackoverflow.com/questions/1859554/what-is-entropy-and-information-gain

WORDS IN VECTOR SPACES

BINARY VS. FREQUENCY
(+) Binary is a very compact representation (in terms of
memory).
(+) Algorithms like Decision Trees have a very straight-
forward and compact structure.
(-) Binary says very little about the weight of each word
(feature).
(-) We can't use more advanced algorithms that work
with Vector Spaces.

TERM FREQUENCIES - SOME NOTATION
Let be a set of documents, and

 (previously) a set of index terms for
.

Each document can be represented as a frequency
vector:

where denotes the frequency of term for
document .

Thus, would be the word length of some document .

D = { , , … , } d1 d2 dN

T = { , , … , }t1 t2 tM V

D

∈ Ddi

= ⟨tf(,), … , tf(,)⟩d ⃗
i t1 di tM di

tf(t, d) ∈ Ttj

di

∑J
j=1 dj d

TERM FREQUENCIES

= the cat sat on the matd0

= my cat sat on my catd1

T = []cat mat my on sat the

X = []
1

2

1

0

0

2

1

1

1

1

1

0

TERM FREQUENCIES?

 less important than ,
but also ?
Information Theory to the rescue!

Notice +1 smoothing to avoid

d0 = 'natural-language-processing.wiki'

d1 = 'information-retrieval.wiki'

d2 = 'artificial-intelligence.wiki'

d3 = 'machine-learning.wiki'

d4 = 'text-mining.wiki'

d5 = 'computer-vision.wiki'

t = []learning

= log() =Xt

⎡

⎣

⎢⎢⎢⎢
⎢⎢⎢⎢

27

2

46

134

6

10

⎤

⎦

⎥⎥⎥⎥
⎥⎥⎥⎥

Xt

⎡

⎣

⎢⎢⎢⎢
⎢⎢⎢⎢

3.33

1.10

3.85

4.91

1.95

2.40

⎤

⎦

⎥⎥⎥⎥
⎥⎥⎥⎥

tf = 10 tf = 100

*10

log(tf(t, d) + 1)

log(0) = −inf

SOME REMAINING PROBLEMS
The longer a document, the higher the probability a
term will occur often, and will thus have more weight.
Rare terms should actually be informative, especially if
they occur amongst few documents.

If and both have in their
vectors, and all the other documents do not
strong similarty.

d1 d2 cross-validation

→

Latter: Document Frequency

(INVERSE) DOCUMENT FREQUENCY

=idft logb

N

dft

t = []naive

= = 3 = = 0.30Xt

⎡

⎣

⎢
⎢⎢⎢
⎢⎢⎢
⎢

1

0

2

3

0

0

⎤

⎦

⎥
⎥⎥⎥
⎥⎥⎥
⎥

dft idft logb

6

3

PUTTING IT TOGETHER: WEIGHTING

learning text language intelligence

0 5 0.32 1 10 0

1 2 21 0.0 6 0

2 0 3 0 1 0.33

tf ∗ idf

= log(tf(t, d) + 1) ⋅wt,d logb
N

dft

d

→

→

→

NORMALIZING VECTOR REPRESENTATIONS
We �xed the global information per
instance.
Despite , we still don't account for the length of
documents (i.e. the amount of words in total).
Why is this an issue?

document ∗ term

tf ∗ idf

-NEAREST NEIGHBOURSk

EUCLIDEAN DISTANCE

d(,) =x⃗ y ⃗ (−∑
i=1

n

x⃗ i y ⃗ i)
2

− −−−−−−−−−

√

Documents with many words are far away.

 NORMALIZATIONℓ2

|| | =x⃗ |2 ∑
i

x
2
i

− −−−−
√

Divide all feature values by norm.

COSINE SIMILARITY
∙ = = + + … +a⃗ b ⃗ ∑n

i=1 a⃗ ib ⃗
i a⃗ 1b ⃗

1 a⃗ 2b ⃗
2 a⃗ nb ⃗

n

Under the norm only (otherwise
normalize vectors before)!

ℓ2

USING SIMILARITY IN -NN
Store the complete training matrix in memory.
Calculate cosine / euclidean metric between a given
and all .
Choose the vectors from with the highest
similarity to .
Look up the labels for these vectors, take majority
label this is the classi�cation.

k

Xtrain

x⃗ test

∈x⃗ train Xtrain

k Xtrain

x⃗ test

k

→

AUGMENTATIONS TO -NN
Use different metrics.
Weight labels by:

Frequency (majority preferred).
Inverse frequency (rarer preferred).
Distance (closer instances count heavier).

k

Weightings avoid ties!

