WORKING WITH TEXT DATA - PART I

Practical Lecturesby Chris Emmery (MSc)

TODAY'S LECTURE

- Representing text as vectors.
- Binary vectors for Decision Tree classification.
- Using Vector Spaces and weightings.
- Document classification using k-NN.

HOW IS THIS DIFFERENT THAN BEFORE?

- Numbers are numbers. Their scales and distributions might be different; the information leaves little to interpretation.
- Language is complex:
 - Representing language is complex.
 - Mathematically interpreting language is complex.
 - Inferring knowledge from language is complex.
 - Understanding language is complex.

NOISY LANGUAGE

Just netflixed pixels, best time ever lol - 1/5

LANGUAGE AS A STRING

title, director, year, score, budget, gross, plot
"Dunkirk", "Christopher Nolan", 2017, 8.4, 100000000, 183836652, "Allied soldiers
"Interstellar", "Christopher Nolan", 2014, 8.6, 165000000, 187991439, "A team of e
"Inception", "Christopher Nolan", 2010, 8.8, 1600000000, 292568851, "A thief, who e
"The Prestige", "Christopher Nolan", 2006, 8.5, 40000000, 53082743, "After a trag:
"Memento", "Christopher Nolan", 2000, 8.5, 9000000, 25530884, "A man juggles seare

TEXT TO VECTORS

CONVERTING TO NUMBERS

 $d= ext{the cat sat on the mat}
ightarrow ec{d}=\langle ?
angle$

WORDS AS FEATURES

d= the cat sat on the mat \rightarrow

```
\begin{bmatrix} \mathrm{cat} & \mathrm{mat} & \mathrm{on} & \mathrm{sat} & \mathrm{the} \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}
```

Bag-of-Words Representation

DOCUMENTS AS INSTANCES

 $d_0 =$ the cat sat on the mat

 $d_1 = ext{my cat sat on my cat}$

cat	mat	my	on	sat	the
1	1	0	1	1	1
1	0	1	1	1	0

DOCUMENTS * TERMS

$$V = [$$
 cat mat my on sat the $]$

$$X = egin{bmatrix} 1 & 1 & 0 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

DOCUMENT SIMILARITY

Wikipedia articles:

data	language	learning	mining	text	vision	y
1	0	1	0	0	1	CV
1	1	1	0	1	0	NLP
1	0	1	1	1	0	TM

- CV = Computer vision
- NLP = Natural Language Processing
- TM = Text Mining

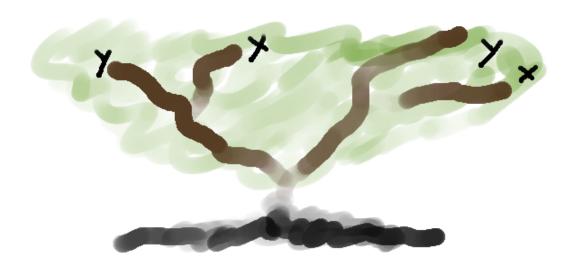
DOCUMENT SIMILARTY - JACCARD COEFFICIENT

$$egin{aligned} d_0 &= \langle 1,0,1,0,0,1
angle & J(d_0,d_1) = 2/5 = 0.4 \ d_1 &= \langle 1,1,1,0,1,0
angle & J(d_0,d_2) = 2/5 = 0.4 \ d_2 &= \langle 1,0,1,1,1,0
angle & J(d_1,d_2) = 3/5 = 0.6 \end{aligned}$$

$$J(A,B) = rac{|A \cap B|}{|A \cup B|}$$

words in A **and** B (intersection) / words in A **or** B (union)

DECISION TREES (ID3)



CLASSIFICATION RULES

data	language	learning	mining	text	vision	y
1	0	1	0	0	1	CV
1	1	1	0	1	0	NLP
1	0	1	1	1	0	TM

```
if 'vision' in d:
    label = 'CV'
else:
    if 'language' in d:
        label = 'NLP'
    else:
        label = 'TM'
```

INFERRING RULES (DECISIONS) BY INFORMATION GAIN

INFERRING RULES (DECISIONS) BY INFORMATION GAIN

INFERRING RULES (DECISIONS) BY INFORMATION GAIN

		spam	ham	total
free	0	1	3	4
	1	4	1	5

$$E(ext{free}, ext{Y}) = \sum_{c \in Y} P(c) E(c)$$

$$E(ext{free=0},Y) = -\left(rac{1}{4}\cdot\log_2rac{1}{4}
ight) - \left(rac{3}{4}\cdot\log_2rac{3}{4}
ight)$$

$$E(\text{free}=1, Y) = -\left(\frac{4}{5} \cdot \log_2 \frac{4}{5}\right) \cdot -\left(\frac{1}{5} \cdot \log_2 \frac{1}{5}\right)$$

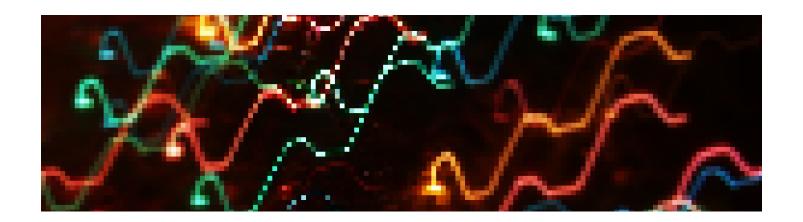
$$E(\text{free}, Y) = \frac{4}{9} \cdot 0.811 + \frac{5}{9} \cdot 0.722 = 0.762$$

ID3 ALGORITHM

- Feature (word) with highest Information Gain will be split on first.
- Instances divided over both sides calculations will be repeated on leftovers (recursion).
- If all leftover instances belong to one class, make decision.
- Create more and more rules until some stopping criterion.

More info: here, here and here.

WORDS IN VECTOR SPACES



BINARY VS. FREQUENCY

- (+) Binary is a very compact representation (in terms of memory).
- (+) Algorithms like Decision Trees have a very straightforward and compact structure.
- (-) Binary says very little about the weight of each word (feature).
- (-) We can't use more advanced algorithms that work with Vector Spaces.

TERM FREQUENCIES - SOME NOTATION

Let $\mathbf{D} = \{d_1, d_2, \dots, d_N\}$ be a set of documents, and $\mathbf{T} = \{t_1, t_2, \dots, t_M\}$ (previously V) a set of index terms for \mathbf{D} .

Each document $d_i \in \mathbf{D}$ can be represented as a frequency vector:

$$ec{d}_{i} = \langle ext{tf}(t_{1}, d_{i}), \dots, ext{tf}(t_{M}, d_{i})
angle$$

where $\mathrm{tf}(t,d)$ denotes the frequency of term $t_j \in \mathbf{T}$ for document d_i .

Thus, $\sum_{j=1}^{J} d_j$ would be the word length of some document d.

TERM FREQUENCIES

 $d_0 =$ the cat sat on the mat

 $d_1 = ext{my cat sat on my cat}$

$$T = [$$
 cat mat my on sat the $]$

$$X = egin{bmatrix} 1 & 1 & 0 & 1 & 1 & 1 \ 2 & 0 & 2 & 1 & 1 & 0 \end{bmatrix}$$

TERM FREQUENCIES?

```
d0 = 'natural-language-processing.wiki'
d1 = 'information-retrieval.wiki'
d2 = 'artificial-intelligence.wiki'
d3 = 'machine-learning.wiki'
d4 = 'text-mining.wiki'
d5 = 'computer-vision.wiki'
```

$$t = [\, ext{learning}\,] \ X_t = \left[egin{array}{c} 27 \ 2 \ 46 \ 134 \ 6 \ 10 \end{array}
ight] \ \log(X_t) = \left[egin{array}{c} 3.33 \ 1.10 \ 3.85 \ 4.91 \ 1.95 \ 2.40 \end{array}
ight]$$

- tf = 10 less important than tf = 100, but also $*10$?
- Information Theory to the rescue!
- $\log(\operatorname{tf}(t,d)+1)$
- Notice +1 smoothing to avoid log(0) = -inf

SOME REMAINING PROBLEMS

- The longer a document, the higher the probability a term will occur often, and will thus have more weight.
- Rare terms should actually be informative, especially if they occur amongst few documents.
 - If d_1 and d_2 both have cross-validation in their vectors, and all the other documents do not \rightarrow strong similarty.

Latter: Document Frequency

(INVERSE) DOCUMENT FREQUENCY

$$\mathrm{idf}_t = \log_b rac{N}{\mathrm{df}_t}$$

$$t = [$$
 naive $]$

$$X_t = egin{bmatrix} 1 \ 0 \ 2 \ 3 \ 0 \ 0 \end{bmatrix} \, \mathrm{df}_t = 3 \ \ \mathrm{idf}_t = \log_b rac{6}{3} = 0.30$$

PUTTING IT TOGETHER: tf * idf WEIGHTING

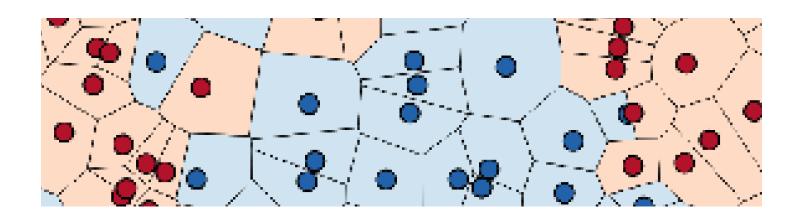
$$w_{t,d} = \log(ext{tf}(t,d) + 1) \cdot \log_b rac{N}{ ext{df}_t}$$

d	learning	text	language	intelligence
0	$5 \rightarrow 0.32$	1	10	0
1	2	$21 \rightarrow 0.0$	6	0
2	0	3	0	1 o 0.33

NORMALIZING VECTOR REPRESENTATIONS

- We fixed the global information per document * term instance.
- Despite tf * idf, we still don't account for the **length** of documents (i.e. the amount of words in total).
- Why is this an issue?

k-NEAREST NEIGHBOURS



EUCLIDEAN DISTANCE

$$d(ec{x},ec{y}) = \sqrt{\sum_{i=1}^n (ec{x}_i - ec{y}_i)^2}$$

Documents with many words are far away.

ℓ₂ NORMALIZATION

$$||ec{x}||_2 = \sqrt{\sum_i x_i^2}$$

Divide all feature values by norm.

COSINE SIMILARITY

$$ec{a}ullet ec{b} = \sum_{i=1}^n ec{a}_i ec{b}_i = ec{a}_1 ec{b}_1 + ec{a}_2 ec{b}_2 + \ldots + ec{a}_n ec{b}_n$$

Under the ℓ_2 norm only (otherwise normalize vectors before)!

USING SIMILARITY IN k-NN

- Store the complete training matrix X_{train} in memory.
- Calculate cosine / euclidean metric between a given \vec{x}_{test} and all $\vec{x}_{\mathrm{train}} \in X_{\mathrm{train}}$.
- Choose the k vectors from X_{train} with the highest similarity to \vec{x}_{test} .
- Look up the labels for these k vectors, take majority label \rightarrow this is the classification.

AUGMENTATIONS TO k-NN

- Use different metrics.
- Weight labels by:
 - Frequency (majority preferred).
 - Inverse frequency (rarer preferred).
 - Distance (closer instances count heavier).

Weightings avoid ties!