BEST PRACTICES & COMMON PIT FALLS

Practical Lectures

by Chris Emmery (MSc)

@_cmry • @cmry

THIS LECTURE

- Evaluation in Practice
- Setting up for Generalization
 - Data
 - Target
 - Algorithms
- Real Example

EVALUATION IN PRACTICE

WHY EVALUATION?

- Data: $X = [[0.25, 0.13, 0.90], \dots, [0.56, 0.94, 0.72]]$
- True Labels: $y = \{0, 1, 0, 0, 1, \dots, 1\}$
- Model: $k ext{-NN}(X; k=3) o \hat{y}$
- Predictions: $\hat{y} = \{1, 1, 0, 0, 0, \dots, 1\}$

How good is our model? Model = algo + params + data

STATS VS. ML

- Stats: hypothesis → data → test → significance + effect size → conclusions
- ML: hypothesis → data → model → prediction + baseline metrics → conclusions

Did our model learn something? Are we doing better than \boldsymbol{x} (baseline, previous model iteration, related work, state-of-the-art)?

FACILITATE FORMAL COMPARISON

- True Labels: $y = \{0, 1, 0, 0, 1, \dots, 1\}$
- Our Predictions: $\hat{y} = \{1, 1, 0, 0, 0, \dots, 1\}$
- ModelX Predictions: $\hat{m} = \{0, 1, 0, 0, 0, \dots, 1\}$
- Baseline Predictions: $\hat{b} = \{1, 1, 1, 1, 1, \dots, 1\}$

	Baseline	ModelX	Our model
accuracy	0.5	0.85	0.90

EVALUATION: THE RIGHT METRIC FOR THE JOB

- Regression:
 - \blacksquare R^2 , RMSE, MAE, and more.
- Classification:
 - Accuracy, Precision, Recall, F_1 -score.
 - Losses, Rankings, ROC / AUC, and more.

REGRESSION: THE RIGHT METRIC?

- $R^2 \rightarrow$ how well does my model fit the data?
 - Low $R^2 \neq$ useless model.
 - High $R^2 \neq$ useful model: overfitting, incorrect predictions.
- MAE → how far do my predictions deviate from the actual values?
 - RMSE \rightarrow how far is the model off, and how bad is it (bigger is worse)?
 - MAE / RMSE choices depend on the problem.
 - MAE / RMSE interpretation depends on the problem.

CLASSIFICATION: THE RIGHT METRIC?

- Accuracy: assumes balanced classes, or multiple labels.
- P / R / F_1 : good to assess certain characteristics of the predictions, but more classes makes interpretation tricky; (show average over classes, weight averages by class frequency, etc.).

ARE HIGH SCORES EVERYTHING?

spoiler: no

SETTING UP FOR GENERALIZATION

Source: Explaining and Harnassing Adverserial Examples - Goodfellow et al. (2015)

BEFORE ANYTHING: KNOW YOUR DATA!

- How was it collected? Is there a lot of noise?
 - Are there any anomalies in my data / features?
 - How many outliers / missing values?
 - Is standardization / normalization required?
- How was it labelled? What was the agreement?
 - Information leakage (pollution, contamination)?
- What are useful features, which are less useful?

TARGET

- Do you have a target?
- Is the task realistic given the data?
- Are you doing what you want to be doing?
- Are you measuring the performance correctly?

Data + Target: Your data is a sample, is it a good sample (size / distribution)?

ALGORITHMS

- Do I need Machine Learning?
- Which kind of algorithm fits my problem?
- What are the properties of an algorithm / what are the assumptions / how is it expected to behave?
- How interpretable is the algorithm?
- What do the hyper-parameters do? Will it affect *x*?
- How is it performing; bias / variance / underfitting / overfitting?

MOST IMPORTANT: FAIR EVALUATION

- Choose a evaluation scheme that fits with your data (more later).
- Always make sure you have a baseline:
 - Majority class for classification.
 - Mean target value for regression.
 - Even better: make your own!
 - Take some standard parameter 'simple' algorithm to compare.
- Leave your test side aside until the very end!

EVALUATION SCHEMES

- Hold-out
- *k*-fold Cross Validation
 - *k*-fold Cross Validation (nested)
- Leave-One-Out

When to use what?

REAL EXAMPLE

DISCLAIMER: RULES ARE NOT CLEAR-CUT IN PRACTICE

- Good advice \neq always applicable advice.
- Many factors influence how to tackle certain prediction tasks.

DATASET

```
import pandas as pd

df = pd.DataFrame.from_csv('kc_house_data.csv')
    df.head()
```

id	date	price	bedrooms	bathrooms	Ç
7129300520	20141013T000000	221900.0	3	1.00	
6414100192	20141209T000000	538000.0	3	2.25	
5631500400	20150225T000000	180000.0	2	1.00	

```
del df['date']
```

PREPPING THE DATA

y = df.pop('price')

```
X = df.as_matrix()

from sklearn.preprocessing import StandardScaler
X = StandardScaler().fit_transform(X)

from sklearn.model_selection import train_test_split
X, X_hidden, y, y_hidden = \
    train_test_split(X, y, test_size=0.5)

from sklearn.preprocessing import PolynomialFeatures
pl = PolynomialFeatures()
X = pl.fit_transform(X)
X_hidden = pl.transform(X)
```

OUR BASIC MODEL

```
from sklearn.linear_model import LinearRegression
lr = LinearRegression(n_jobs=-1)
lr.fit(X, y)
```

```
from sklearn.metrics import mean_absolute_error

ŷ_lr = lr.predict(X)
mean_absolute_error(y, ŷ_lr)
```

```
126761.69464928517
```

```
mean_absolute_error(y, [y.mean()] * len(y))
```

236047.97702255406

HIDDEN PERFORMANCE

```
ŷ_lr_hidden = lr.predict(X_hidden)
mean_absolute_error(y_hidden, ŷ_lr_hidden)
```

126889.91221034051

Linear Regression Predictions

DIFFERENT MODEL

```
from sklearn.kernel_ridge import KernelRidge
svr = KernelRidge(kernel='rbf')
svr.fit(X, y)
```

```
\hat{y}_rf = svr.predict(X)
mean_absolute_error(y, \hat{y}_rf)
```

129596.0710315921

	BL	LR	KR
MAE	236047	126889	129596

HIDDEN PERFORMANCE

ŷ_rf_hidden = svr.predict(X_hidden)
mean_absolute_error(y_hidden, ŷ_rf_hidden)

129596.0710315921

KernelRidge Predictions

DON'T TUNE ON TRAINING

KernelRidge(alpha=alpha, gamma=0.1, kernel='rbf')

```
MAE for alpha=0.1 : 33690.2981898
MAE for alpha=0.01 : 5535.04330513
MAE for alpha=0.001 : 1423.82136117
```

Linear Regression Predictions

USING CROSS-VALIDATION

```
X_train, X_test, y_train, y_test = train_test_split(X, y)
```

	BL	LR	KR	KRF	KR CV	<i>k</i> -NN CV	
MAE	236047	126889	129596	297466	124109	93482	

FINAL RESULTS

