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THIS LECTURE
Evaluation in Practice
Setting up for Generalization

Data
Target
Algorithms

Real Example



EVALUATION IN PRACTICE



WHY EVALUATION?

Data: 
True Labels: 
Model: 
Predictions: 

f(X) → Y

X = [[0.25, 0.13, 0.90], … , [0.56, 0.94, 0.72]]

y = {0, 1, 0, 0, 1, … , 1}

k-NN(X; k = 3) → ŷ

= {1, 1, 0, 0, 0, … , 1}ŷ

How good is our model? 
Model = algo + params + data



STATS VS. ML
Stats: hypothesis → data → test → signi�cance + effect
size → conclusions
ML: hypothesis → data → model → prediction +
baseline metrics → conclusions

Did our model learn something? Are we doing better than 
(baseline, previous model iteration, related work, state-of-

the-art)?
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FACILITATE FORMAL COMPARISON
True Labels: 
Our Predictions: 
ModelX Predictions: 
Baseline Predictions:  

Baseline ModelX Our model

accuracy 0.5 0.85 0.90

y = {0, 1, 0, 0, 1, … , 1}

= {1, 1, 0, 0, 0, … , 1}ŷ

= {0, 1, 0, 0, 0, … , 1}m̂

= {1, 1, 1, 1, 1, … , 1}b̂



EVALUATION: THE RIGHT METRIC FOR THE
JOB

Regression:
, RMSE, MAE, and .

Classi�cation:
Accuracy, Precision, Recall, -score.
Losses, Rankings, ROC / AUC, and .
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http://scikit-learn.org/stable/modules/classes.html#regression-metrics
http://scikit-learn.org/stable/modules/classes.html#classification-metrics


REGRESSION: THE RIGHT METRIC?
 → how well does my model �t the data?

Low   useless model.
High   useful model: over�tting, incorrect
predictions.

MAE → how far do my predictions deviate from the
actual values? 
RMSE → how far is the model off, and how bad is it
(bigger is worse)?

MAE / RMSE - choices depend on the problem.
MAE / RMSE - interpretation depends on the
problem.
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CLASSIFICATION: THE RIGHT METRIC?
Accuracy: assumes balanced classes, or multiple labels.
P / R / : good to assess certain characteristics of the
predictions, but more classes makes interpretation
tricky; (show average over classes, weight averages by
class frequency, etc.).
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ARE HIGH SCORES EVERYTHING?
spoiler: no



SETTING UP FOR GENERALIZATION

Source:  - Goodfellow et al. (2015)Explaining and Harnassing Adverserial Examples

https://arxiv.org/pdf/1412.6572v3.pdf?loc=contentwell&lnk=a-2015-paper&dom=section-9


WHY IS GENERALIZATION SO IMPORTANT?



BEFORE ANYTHING: KNOW YOUR DATA!
How was it collected? Is there a lot of noise?

Are there any anomalies in my data / features?
How many outliers / missing values?
Is standardization / normalization required?

How was it labelled? What was the agreement?
Information leakage (pollution, contamination)?

What are useful features, which are less useful?



TARGET
Do you have a target?
Is the task realistic given the data?
Are you doing what you want to be doing?
Are you measuring the performance correctly?

Data + Target: Your data is a sample, is it a
good sample (size / distribution)?



ALGORITHMS
Do I need Machine Learning?
Which kind of algorithm �ts my problem?
What are the properties of an algorithm / what are the
assumptions / how is it expected to behave?
How interpretable is the algorithm?
What do the hyper-parameters do? Will it affect ?
How is it performing; bias / variance / under�tting /
over�tting?
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MOST IMPORTANT: FAIR EVALUATION
Choose a evaluation scheme that �ts with your data
(more later).
Always make sure you have a baseline:

Majority class for classi�cation.
Mean target value for regression.
Even better: make your own!
Take some standard parameter 'simple' algorithm
to compare.

Leave your test side aside until the very end!



EVALUATION SCHEMES
Hold-out

-fold Cross Validation
-fold Cross Validation (nested)

Leave-One-Out

k
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When to use what?



REAL EXAMPLE



DISCLAIMER: RULES ARE NOT CLEAR-CUT IN
PRACTICE

Good advice  always applicable advice.
Many factors in�uence how to tackle certain prediction
tasks.
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DATASET
import pandas as pd 

 

df = pd.DataFrame.from_csv('kc_house_data.csv') 

df.head()

               date                price        bedrooms     bathrooms     s

id                                                                          

7129300520     20141013T000000     221900.0     3            1.00          1

6414100192     20141209T000000     538000.0     3            2.25          2

5631500400     20150225T000000     180000.0     2            1.00          7

del df['date']



PREPPING THE DATA
y = df.pop('price') 

X = df.as_matrix()

from sklearn.preprocessing import StandardScaler 

 

X = StandardScaler().fit_transform(X)

from sklearn.model_selection import train_test_split 

 

X, X_hidden, y, y_hidden = \ 

  train_test_split(X, y, test_size=0.5)

from sklearn.preprocessing import PolynomialFeatures 

 

pl = PolynomialFeatures() 

X = pl.fit_transform(X) 

X_hidden = pl.transform(X)



OUR BASIC MODEL
from sklearn.linear_model import LinearRegression 

 

lr = LinearRegression(n_jobs=-1) 

lr.fit(X, y)

from sklearn.metrics import mean_absolute_error 

 

ŷ_lr = lr.predict(X) 

mean_absolute_error(y, ŷ_lr)

126761.69464928517

mean_absolute_error(y, [y.mean()] * len(y))

236047.97702255406



HIDDEN PERFORMANCE
ŷ_lr_hidden = lr.predict(X_hidden) 

mean_absolute_error(y_hidden, ŷ_lr_hidden)

126889.91221034051



DIFFERENT MODEL

BL LR KR

MAE 236047 126889 129596

from sklearn.kernel_ridge import KernelRidge 

 

svr = KernelRidge(kernel='rbf') 

svr.fit(X, y)

ŷ_rf = svr.predict(X) 

mean_absolute_error(y, ŷ_rf)

129596.0710315921



HIDDEN PERFORMANCE
ŷ_rf_hidden = svr.predict(X_hidden) 

mean_absolute_error(y_hidden, ŷ_rf_hidden)

129596.0710315921



DON'T TUNE ON TRAINING
KernelRidge(alpha=alpha, gamma=0.1, kernel='rbf')

... 

MAE for alpha=0.1 : 33690.2981898 

MAE for alpha=0.01 : 5535.04330513 

MAE for alpha=0.001 : 1423.82136117



USING CROSS-VALIDATION

BL LR KR KRF KR CV -NN CV

MAE 236047 126889 129596 297466 124109 93482

X_train, X_test, y_train, y_test = train_test_split(X, y)

from sklearn.model_selection import KFold, GridSearchCV 

 

p_grid = {"alpha": [10, 1, 0.1, 0.01, 0.001, 0.0001]} 

inner_cv = KFold(n_splits=10, shuffle=True, random_state=42) 

 

clf = GridSearchCV(estimator=KernelRidge(kernel='rbf'), 

                   param_grid=p_grid, cv=inner_cv, n_jobs=-1) 

clf.fit(X_train, y_train)
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FINAL RESULTS


