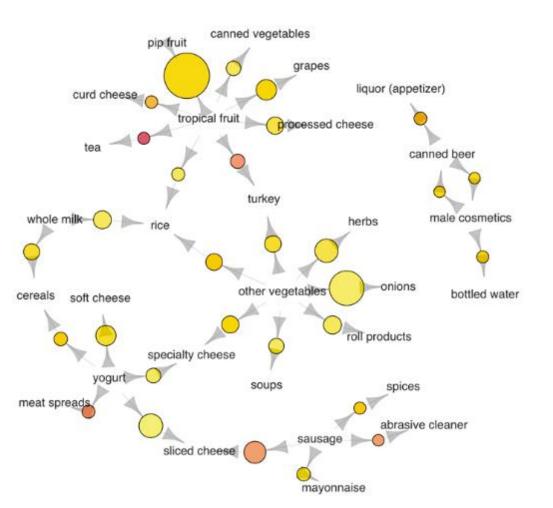
Association mining

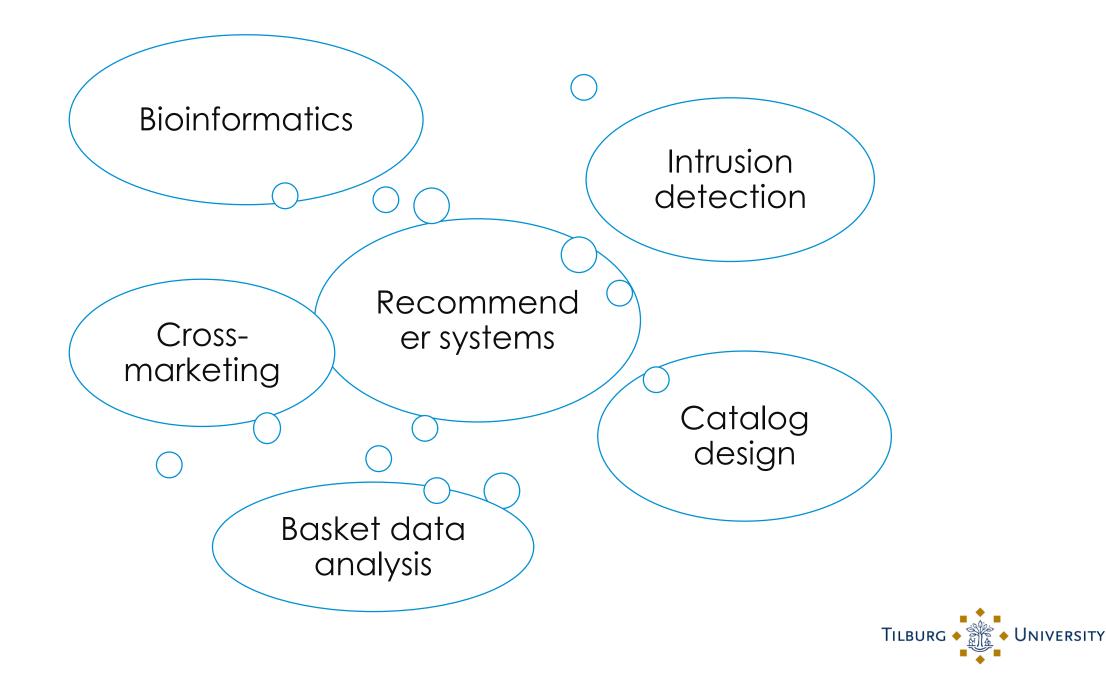
Data Mining for Business and Governance

Dr. Gonzalo Nápoles

What is association mining?

- Association rules mining is about finding
 - Association
 - Correlation
 - Causal structures
- Among a set of items or objects in
 - Transaction databases
 - Relational databases
 - Example datasets
 - Other sources of information



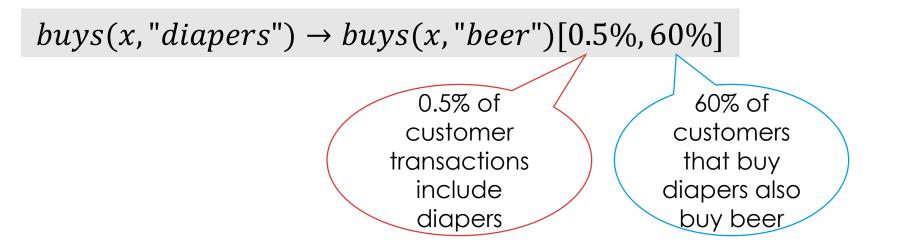


What is an association rule?

• An association rules is an implication with the form:

Antecedent → *Consequent* [*support*, *confidence*]

- Example:
 - Given a database of customer transactions where each transaction is a list of items purchased by a customer in a visit



What is an association rule?

- How to use them?
 - Find all rules that associate the presence of one set of items with that of another set of items. Any number of items, in principle.

 $buys(x, "bread") \& buys(x, "butter") \rightarrow buys(x, "milk")[30\%, 60\%]$

- We can specify constraints on rules:
 - Example: "find only rules involving home laundry appliances"

Measures: support and confidence

- We need a binary set of attributes $I = \{i_1, ..., i_N\}$ called *items* AND a set of transactions $T = \{t_1, ..., t_M\}$ called database.
- Each transaction t has a unique ID and contains a subset of items in I. A rule can be represented as $X \rightarrow Y : X, Y \subseteq I$.

Antecedent → *Consequent* [*support*, *confidence*]

Measures: support and confidence

• <u>Support</u>: can be defined as the proportion (**probability**) of transactions t that contains itemset X in T. That is to say:

$$supp(X) = \frac{|t \in T : X \subseteq t|}{|T|}$$

 <u>Confidence</u>: can be defined as the ratio (conditional probability) of transaction having X also contains Y.

$$conf(X \rightarrow Y) = supp(X \cup Y)/supp(X)$$

Mining association rules

- Given a set of transactions *T*, the goal of association rule mining is to find all rules having
 - support \geq minimum support (minsup) threshold
 - confidence ≥ minimum confidence (minconf) threshold

ID	Items
1	A, B, C
2	A, C
3	A, D
4	B, E, F

With minimum support 50% and minimum confidence 50%, we have:

$$A \to C [50\%, 66.6\%]$$

$$C \to A \ [50\%, 100\%]$$

Brute-force approach

- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the *minsup* and *minconf* thresholds
- Computationally prohibitive!

Mining association rules

Two-step approach:

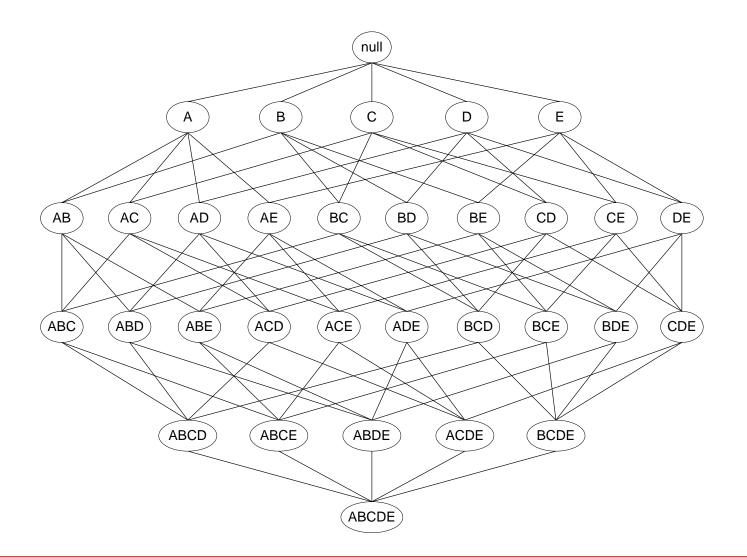
1. Frequent Itemset Generation

Generate all itemsets whose support ≥ minsup

2. Rule Generation

Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

Frequent itemset generation



Given N items, there are 2^{N} -1 possible itemsets

Mining association rules

Transaction ID	Items		Frequent Itemset	Support
1	A, B, C		{A}	75%
2	A, C	minsup = 50%	{B}	50%
3	A, D	minconf = 50%	{C}	50%
4	B, E, F		{A,C}	50%

For rule $A \rightarrow C$:

support = $supp(\{A, C\}) = 50\%$ confidence = $supp(\{A, C\})/supp(\{A\}) = 66.6\%$

The Apriori principle

Any subset of a frequent itemset must be frequent

Relevance

Subsets with non-frequent items are not interesting!

Mining frequent itemsets

The key step

- Find the *frequent itemsets*: the sets of items with minimum support
 - A subset of a frequent itemset must also be a frequent itemset, i.e., if {AB} is a frequent itemset, both {A} and {B} must be a frequent itemset
 - Iteratively find frequent itemsets with cardinality from 1 to k (k-itemset) (usually k is not larger than 7)

TILBURG

Use the frequent itemsets to generate association rules.

Apriori algorithm

• Let k = 1

- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
 - Generate length (k + 1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the database
 - Eliminate candidates that are infrequent, thus retaining only those that are frequent

Apriori algorithm – an example

TID	Items		Itemset	Suppo	ort		ltemset	Supp	ort		
100	134		{1}	2			{1}	2			
200	235		{2}	3			{2}	3			
300	123		{3}	3			{3}	3]
	5		{4}	1			{5}	3		Ł	Ļ
400	25		{5}	3							
mins	up=2]					
									Item	set	Support
		temset	Suppor	1	lten	nset	Support		{1 2}		1
	{	235}	2		{1.3	}	2		{1 3}		2
		-			{2.3	-	2		{1 5}		1
					{2 5		3		{2 3}		2
					{3 5	-	2		{2 5}		3
							_		{3 5}		2

How to generate candidates?

- Suppose the items in L_{k-1} are listed in an order
- Step 1: self-joining L_{k-1}
 insert into C_k
 select p.item₁, p.item₂, ..., p.item_{k-1}, q.item_{k-1}
 from L_{k-1} p, L_{k-1} q
 where p.item₁=q.item₁, ..., p.item_{k-2}=q.item_{k-2}, p.item_{k-1} < q.item_{k-1}
- Step 2: pruning

 for all itemsets c in C_k do
 for all (k-1)-subsets s of c do
 if (s is not in L_{k-1}) then delete c from C_k

Apriori algorithm - example

Da	Database C ₁		L_1						
TID	ltems		Itemset	Suppo	ort		Itemset	Support	
100	134	1 st scan	{1}	2			{1}	2	
200	235		{2}	3			{2}	3	
300	1235		{3}	3			{3}	3	
400	25		{4}	1			{5}	3	
		_	{5}	3					
G				1 1	C		C_2	Itemset	Support
<i>C</i> ₃		Support		temset		DOLL	۸	{1 2}	1
	{2 3 5}	2] `	13}	2		<td>{1 3}</td> <td>2</td>	{1 3}	2
3 rd :	scan		-	23}	2		2 nd scan	{1 5}	1
	temset	Support		2 5}	3			{2 3}	2
		2	-3 {	3 5}	2			{2 5}	3
	J							{3 5}	2

minsup=2

More considerations

Choice of minimum support threshold:

- Iowering support threshold results in more frequent itemsets
- this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set:
 - more space is needed to store support count of each item
 - if number of frequent items also increases, both computation and I/O costs may also increase

More considerations

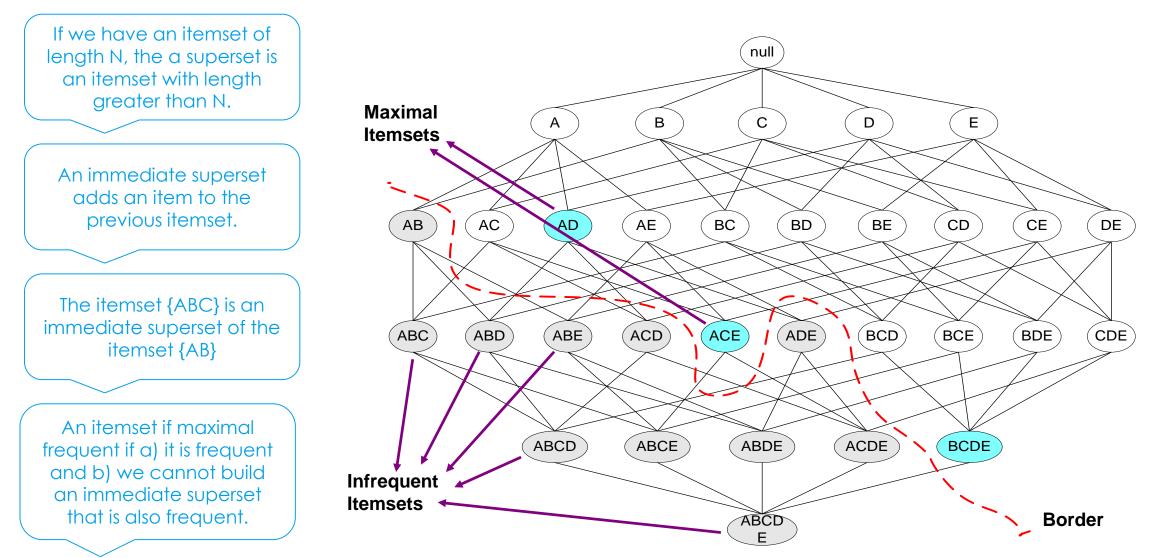
Size of database

• Apriori makes multiple passes, thus the execution time of algorithm may increase significantly.

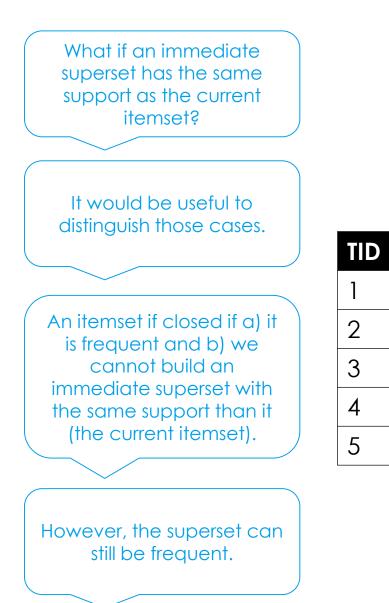
Average transaction width

- Transaction width increases with denser databases.
- This may increase max length of frequent itemsets.

Maximal frequent itemset



An itemset is maximal frequent if no immediate superset is frequent



Closed itemset

ltemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

ltemset	Support
{A,B,C}	2
{A,B,D}	3
{A,C,D}	2
{B,C,D}	3
{A,B,C,D}	2

An itemset is closed if no immediate superset has the same support as the itemset.

ltems

{A,B}

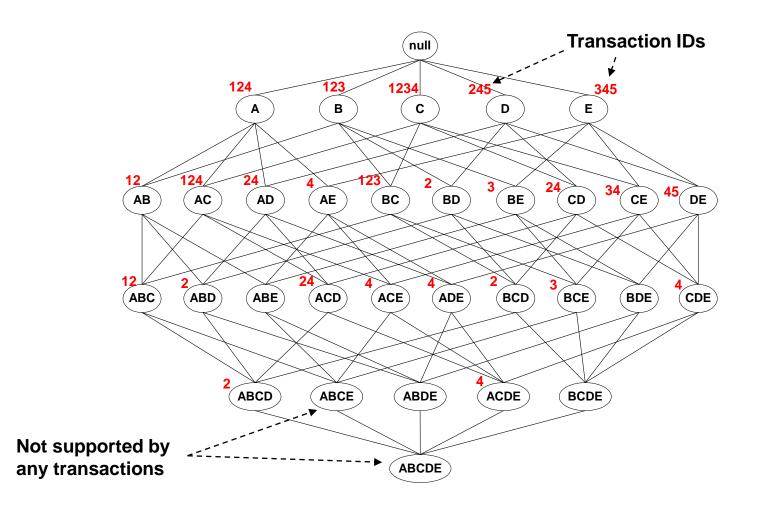
 $\{B,C,D\}$

 $\{A,B,D\}$

 $\{A,B,C,D\}$

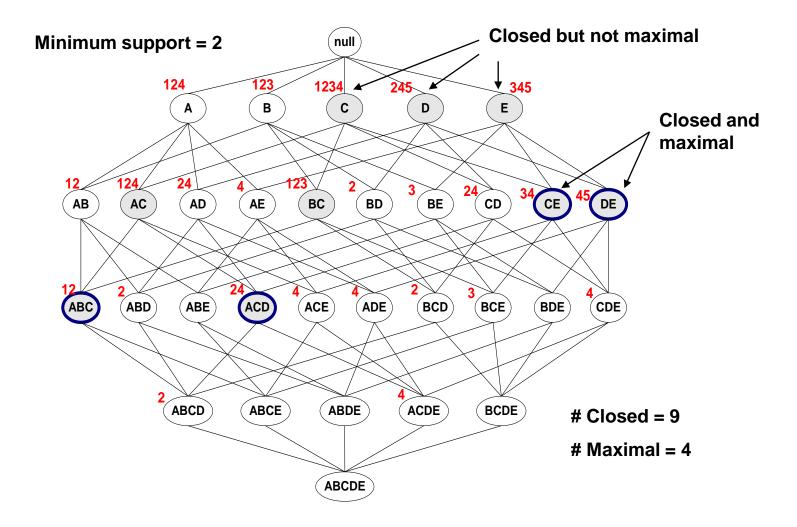
 $\{A,B,C,D\}$

Maximal versus closed

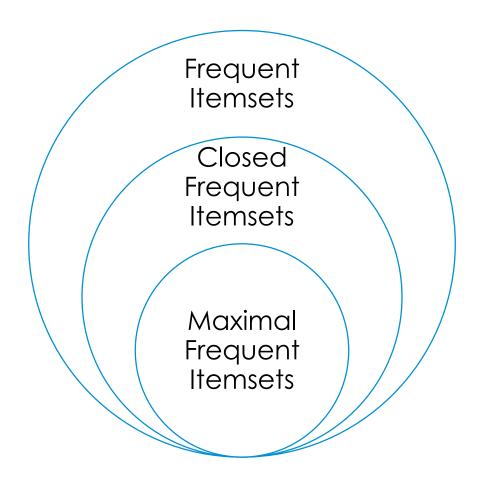


TILBURG

Maximal versus closed



Maximal versus closed



Effect of support distribution

- How to set the appropriate *minsup* threshold?
 - If *minsup* is set too high, we could miss itemsets involving interesting rare items (e.g., expensive products)
 - If *minsup* is set too low, it is computationally expensive and the number of itemsets is very large
- Using a single minimum support threshold may not be effective.

Quantitative association rules

Record ID	Age	Married	NumCars
100	23	No	1
200	25	Yes	1
300	29	No	0
400	34	Yes	2
500	38	Yes	2

Sample Rules	Suppor t	Confiden ce
<age:3039> and <married:yes> → <numcars:2></numcars:2></married:yes></age:3039>	40%	100%
<numcars:01> → <married:no></married:no></numcars:01>	40%	66.70%

Mapping quantitative to Boolean

- Map the problem to the Boolean association rules by:
 - discretizing a non-categorical attribute to intervals
 - Age [20,29], [30,39],...
 - forming Boolean records
 - categorical attributes: each value becomes one item
 - non-categorical attributes: each interval becomes one item

Record ID	Age	Married	Cars
100	23	No	1
500	38	Yes	2

Record ID		Age: 3039	Married: yes	Married: no	Cars: 0	Cars: 1	Cars: 2
100	1	0	0	1	0	1	0
500	0	1	1	0	0	0	1

Mining quantitative association rules

- Problems with the mapping
 - too few (large) intervals: loss of useful information and low confidence
 - too many (small) intervals: not enough support
- Solutions
 - using the supports of an itemset and its generalizations to determine the intervals
 - using interest measure to control the number of association rules
- However, this is still very much an open problem...

Pattern evaluation

- Association rule algorithms tend to produce too many rules
 - many of them are uninteresting or redundant
 - Redundant if {A,B,C} → {D} and {A,B} → {D} have same support & confidence
- We can design other measures to prune/rank the derived patterns and replace support & confidence.

Association mining

Data Mining for Business and Governance

Dr. Gonzalo Nápoles