
Practical 1

by Chris Emmery

In this practical
1 we will focus on exploratory dataset analysis 1 Important Practical Note: If you can-

not answer a task during the practicals
fully, or feel unsure about your answer
(even after the explanation), please ask!
It is very important that you develop
the correct intuitions for each of the
points we discuss here. Sometimes they
just don’t ‘click’ by themselves; they
require a lot of repeated practice and
interpretation, and not every explana-
tion works for everyone. We will be
very happy to answer all your questions
on the Discussion forum!

— an important first step before engaging in any Data Mining activ-
ities. We want get to know our data: find interesting observations,
anomalies in data, and think about how to go about solving the task.

Refresher

Data Mining, Machine Learning, and all related fields

have a special way of naming certain things related to data that are
important to know by heart. This refresher will give you a short
overview. Say we have a table (our data) describing ticket sales for
concerts. See a small example below:

id gender age price concert genre

01 f 21 40 AC/DC hard rock
07 m 45 75 Ed Sheeran acoustic
11 m 30 64 Depeche Mode electronic
05 f 14 54 Hans Zimmer instrumental

Table 1: Tickets instances containing
customer & meta-data regarding their
sales.

Each line (or row) of data is what we call an instance2. An in- 2 Can also be referred to as an entry,
observation, or data point.stance usually refers to something concrete: a person, an animal, a

song, a document, or in this case: a ticket. Instances are described by
features3, they tell you some (hopefully) characteristic information 3 Also known as variables, or attributes.

about these instances. Instances can be represented mathematically as
a feature vector4. 4 For the first instance above, this would

be noted as:

~x1 = 〈01, f, 21, 40, AC/DC, hard rock〉
(1)

Where ~x is the vector, and subscript 1

the index.

Interpreting Features: Continuous vs Discrete

This doesn’t simply work, however. In general, we want to be
able to do calculations with these data. As such, features with what

2 tilburg university

we call strings (letters) cannot be used in their raw form (e.g. f,
AC/DC). For the sake of simplicity, we will get rid of the concert and
genre features for this example. The gender variable can be recoded
to 0 for f and 1 for m. So, we will get:

Types of Features

Discrete
Some enumer-

able, limited set.

Binary
Features that

are either 0 or
1 (on or off).

Ordinal
Features where
order matters.

Nominal
Features with
no inherent

order or ranking.

Continuous
Any value

(within a range).

Interval
Features where
the difference
between two
values makes
sense (10-20 is
same as 20-30).

Ratio
Features that

have an absolute
0 (where nothing

of that feature
is happening),

and thus multi-
plications make
sense (twice the

value means
twice as ...).

Figure 1: Overview of the different
types of features.

~x1 = 〈01, 0, 21, 40〉 (2)

Now, the remaining 4 features also require a bit of interpretation.
We distinguish between continuous features and discrete features.
Continuous features are real valued and can be within some range,
whereas discrete features are finite, and are usually associated with
some label or category. In our example, id, age and price are all
considered numeric (technically, they are all ratio). Gender can
either be binary feature (0 = f and 1 = m), or other gender identities
might be added, making it nominal. See Figure 1 for further info.

Feature Spaces

The beauty of using this numeric representation is that each
instance can be represented as a point in a space (or n-dimensional
graph). So say that we plot the age on the x and price on the y-axis
for some instances, our feature space as this is called, will look like
Figure 2. This is a 2-dimensional space (with 2 axes). A bit more
fancier 3-D space can be in Figure 3. However, we have 4 features
- so this would have to be plotted in a 4-dimensional space. Unfor-
tunately, we as humans can only see as much as 3-dimensions, so
there’s no way to show you how our actual feature space would look
like (even colors and shapes will only get us so far). Luckily however,
mathematical functions can handle this!

age

price

~x4 = 〈14, 54〉

~x1 = 〈21, 40〉

~x2 = 〈45, 75〉

Figure 2: Vector space representation of
Table 1.

Understanding your Data

Your first step as a data scientist (as frequently repeated in
the lecture) is to know your data. Everyone can learn to fire up a pro-
gram and click a few buttons, or write a few lines of code. It is your
task, however, to understand this data and generate creative insights
and be able to communicate these (in the form of a scientific paper or
presentation). It is therefore important to know the possibilities and
limitations of your data. The first dataset we’ll be working with is the
following. 5

5
Information task data
Data raw githubPlease make sure you understand the dataset and the task before

beginning!

https://www.kaggle.com/c/titanic
https://www.kaggle.com/c/titanic/data
https://raw.githubusercontent.com/tcsai/data-mining/master/data/Titanic/titanic.csv
https://github.com/tcsai/data-mining/blob/master/data/Titanic/titanic.csv

data mining 3

Setting up Jupyter

Figure 3: A 3-D representation where
classes are coloured.

Figure 4: anr:

Figure 5: Switching to Markdown. +

shown in menu bar.

Open up Jupyter
6 and do the following: Open a new notebook

6 https://jupterlab.uvt.nl/

using File New Notebook and start with inserting your anr in the
first cell (see Figure 4

7), then switch the cell from code to markdown

7 This looks a bit different in Jupyter
Labs, but the menu parts are still there
somewhere.

(for typing) by switching in the toolbar (Figure 5). Finally, you can
insert new cells below using the + icon. Alternatively, while having
your cursor active in a cell, press Esc to deselect it, and then b . You
can either run a code cell, or render a Markdown8 cell, by pressing

8 Markdown is actually a pretty handy
standard for formatting text. It’s easy to
practice within Jupyter.

ctrl / cmd + Enter .
Now, let’s get started, we’re first going to create a cell with a few

handy tools for the notebook. The first line %matplotlib inline

makes sure that whenever there’s a plot, it is displayed in our browser
(otherwise it would just output some text). The other lines import the
‘warning‘ package and disable some warnings from Python (pandas
sometimes throws warnings for functions that will not work in some
new version and such). These clutter our notebook, so we don’t want
them9

9 Important Note: Save often! The
servers can be unstable. This pre-
vents wasted time and (potentially)
headaches.

%matplotlib inline

import warnings

warnings.simplefilter(action='ignore')

Now, we want to load titanic.csv. A small explanation of the di-
rectory: all our data is located in /srv/data-mining/data/. When
inputting this directory, when you place your cursor at the last / and
press / Tab , you can see the dataset directories to choose from
(Housing and Titanic should be among them). If you select the direc-
tory from the drop-down menu and then press Enter and then /
Tab again, you will see the dataset files.

We shorthand pandas (version 0.25.2) to pd and then load the .csv

file into our DataFrame using read_csv. I will be providing links to
the documentation of the objects and functions that we’re using.
Here you can see information regarding the parameters that a func-
tion takes. They are basically ‘options’ for a certain function. As you
can see, read_csv has index_col, but also for example sep, which—if
you read the documentation—can be used to indicate the .csv file
delimiter. ‘Delimiter’ here means the character separating the val-
ues in our .csv file (by default it’s set to ’,’ which is according to
the format of our file). The index column is used to uniquely identify
all your instances (usually with a number). The Titanic dataset has an
actual index column, namely PassengerId. However, as it is unique
for every instance, we don’t want to use it as a feature anyway (think
about why).

https://jupterlab.uvt.nl/
https://daringfireball.net/projects/markdown/
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html

4 tilburg university

Finally we store our dataframe in what’s called a variable; a
container with a name that we store our data (or any other object)
under. Here, I call it df for dataframe. If we put this variable name
on the last line in Jupyter, it will output the contents of the variable
(in this case, our data). As such10: 10 Please keep in mind that each dark

block of code is supposed to be a new
cell! Read back up if you forgot how to
create those.

import pandas as pd

df = pd.read_csv('/srv/data-mining/data/Titanic/titanic.csv',

index_col='PassengerId')

df

Now let’s get into some of the operations that we can run on our
DataFrame. If you search the DataFrame documentation for Methods,
they are all listed. These are all click-able, where more of their func-
tionality is explained. It also short-lists the parameters of the func-
tion, if they are in between brackets ([like,so]), they are optional.
The first one we’ll be using is count() (that, as you can see in the
docs, only has optional parameters). Let’s try:

df.count()

When you put a function on the last line of a cell without a variable
to store it in, this will make Jupyter also show the output of the func-
tion (like above).

Interpreting Raw Data

Given this new information try solving the following tasks. If
we take a quick peek at the Wiki (link), we get some rough numbers
for comparison11. 11 “Titanic had around 885 crew

members on board for her maiden
voyage.[95] Like other vessels of her
time, she did not have a permanent
crew, and the vast majority of crew
members were casual workers who only
came aboard the ship a few hours be-
fore she sailed from Southampton.[96]

Titanic’s passengers numbered ap-
proximately 1,317 people: 324 in First
Class, 284 in Second Class, and 709 in
Third Class. Of these, 869 (66%) were
male and 447 (34%) female. There were
107 children aboard, the largest number
of which were in Third Class.[105] The
ship was considerably under capacity
on her maiden voyage, as she could
accommodate 2,453 passengers—833

First Class, 614 Second Class, and 1,006

Third Class.”

Task 1

• How much of the data are we missing?

• Do you see any features that you do not understand the values of?

• Which information could we potentially use to determine the crew
of the Titanic in this dataset?

Solutions for all tasks are listed at the end.

http://pandas.pydata.org/pandas-docs/version/0.20/generated/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/version/0.20/generated/pandas.DataFrame.count.html#pandas.DataFrame.count
https://en.wikipedia.org/wiki/RMS_Titanic

data mining 5

We can try practising parameter-use a bit by trying the axis pa-
rameter to get column-wise counts rather than row-wise. As you can
see from this line in the docs:

DataFrame.count(axis=0,level=None, numeric_only=False)

Axis is set to 0 by default.

df.count(axis=1)

Solve the difference between row-wise and column-wise counts for
yourself. Also note that when getting any sort of counts for rows,
they are always listed together with their index (PassengerId). We
can see which passenger paid how much fare by selecting a specific
column. This is done with:

df['Fare']

If we’d like to add the names to the output, we can list them like so:

df[['Name', 'Fare']]

Let’s try aggregating some data. We’re interested in how many
passengers were in which economic class. Note that when sub-
setting our pd.DataFrame object to only a single column, it actually
turns into a Series. These have different methods (functions) than
Dataframes. Try value_counts():

df['Pclass'].value_counts()

We can also aggregate even more ‘complex’ levels. Let’s try group-
ing by Sex using groupby(), which we simply add in between our
previous line:

df.groupby('Sex')['Pclass'].value_counts()

Just to quickly walk you through the steps: groupby splits the entire
dataframe between sexes (so all feature values get divided between
male and female). Convince yourself of this by running:

df.groupby('Sex').count()

Notice that count is used here again, because groupby returns all
columns in the Dataframe, so the object is still a Dataframe (not a
Series). This in contrast to the line before, where we add [’Pclass’]

to only select the class feature (turning it into a Series, because only
one column). For that one, we’d apply the value_counts(), as you
can see. So, important take-away: always think if you’re working
on more than one column (dataframe), or just one (series), and see
which methods you can use accordingly. Now we can safely go into
exploring more methods.

http://pandas.pydata.org/pandas-docs/version/0.20/generated/pandas.Series.html?highlight=series#pandas.Series
http://pandas.pydata.org/pandas-docs/version/0.20/generated/pandas.Series.value_counts.html#pandas.Series.value_counts
http://pandas.pydata.org/pandas-docs/version/0.20/generated/pandas.DataFrame.groupby.html#pandas.DataFrame.groupby

6 tilburg university

Visualization

Pandas works well for selecting (sub-setting) and plotting dif-
ferent entries within a dataset. We’ll first look at a way to visualize
certain feature distributions using density plots (see Figure 6, and
see if we can group them by Survived. For all the features that we
inspect, you will see if this influenced whether people survived the
Titanic yes or no. Say that we’d want to check this for Fare, the first
step would be:

y

Figure 6: Density plot.

df.groupby('Survived')['Fare']

Both DataFrames and Series have a plot() method, with many possi-
ble parameters. You’re free to check them out, for this we’ll be using
KDE (Kernel Density Estimation, or density plot). We make our line
look like this:

df.groupby('Survived')['Fare'].plot(kind='kde', legend=True)

The default plots in Pandas don’t look too fancy (granted, it’s not a
plotting library, this is just convenient functionality). We can alter this
somewhat by for example:

import matplotlib.pyplot as plt

plt.style.use('ggplot')

Try running the plot again! Now, if you start changing around the
features, you’ll notice that some aren’t compatible with density plots
(they throw an error). This is because they are discrete, and therefore
don’t have a density estimation. You can use bar plots for these:

df.groupby('Survived')['Sex'].value_counts().plot(kind='Bar')

You should be able to figure out why we didn’t include legend here.
If you tried age, you see the warning array must not contain infs

or NaNs. If you look at the very first pd table dump, you’ll notice
there are NaN ages (Not a Number). These are missing values. We can
fix this with overwriting the age feature:

df['Age'] = df['Age'].fillna(0)

Here, we fill the NaNs with 0. Now, when interpreting the results,
take into account that zeroes are actually NaNs.

http://pandas.pydata.org/pandas-docs/version/0.20/generated/pandas.DataFrame.plot.html#pandas.DataFrame.plot

data mining 7

You can up the complexity of the groupby function by stacking more
features as a list, like so:

df.groupby(['Sex', 'Pclass'])['Survived'].value_counts().plot(kind='Bar')

You can also show the counts above in a table when removing
.plot(kind=’Bar’), if you replace value_counts() with mean()

you get the averages for each group split, etc. Using these plots and
checking the table outputs you can answer the following questions:

Figure 7: Hint from the movie.

Task 2

• Find two features where a certain group has a noticeable high
mortality rate.

• Explain why this is the case with your knowledge of the dataset
(having seen the movie might help, see Figure 7).

Distributions are pretty straight-forward to interpret; the visual-
ization between two features is simple and effective. However, it also
limits displaying interaction between several features (e.g. if young
males tended have lower survival rates than females). For this, we
can use scatter plots (see Figure 8). In pandas, you need to set an x
and y label, like so:

0 2 4 6 8 10 12
4

5

6

7

8

Figure 8: Scatter plot.

df.plot(x='somefeature', y='someotherfeature', kind='scatter')

To stack multiple subsets in one plot, and give them different colors,
we have to select them from the DataFrame based on some condition.
We can do this for example for Survived with the following piece of
code:

died_subset = df[df['Survived'] == 0]

live_subset = df[df['Survived'] != 0]

To break this down, the inner part (df[’Survived’] == 0) returns the
index numbers (that’s where they come in handy!) where the value
of Survived was equal to (==) zero (so the people who did not sur-
vive). The outer part df[....] then receives those index numbers,
and returns a DataFrame with only the instances that met this condi-
tion of ’Survived == 0’. If we want to do the inverse, we simply use
!= (not equals), or, alternatively == 1. We can plot these different sub-
sets by generating to plots, storing the first in a variable, and passing
that along to the second plot.

8 tilburg university

Like so:

ax1 = died_subset.plot(x='somefeature', y='someotherfeature',

label='Died', color='red', kind='scatter')

ax2 = live_subset.plot(x='somefeature', y='someotherfeature',

label='Survived', color='green', kind='scatter',

ax=ax1)

ax2 # to output

Now notice that we’re adding two new parameters here, one to label
a specific subset in the legend12, and the other to color the instances 12 We didn’t have to do this before, as

this was encoded in the values, here it
isn’t.

of the specific subset differently. We can also add an alpha parameter
to determine transparency of the dots (e.g. by setting that to 0.5).

Task 3

• Set Sex to x, and Pclass to y. What can you conclude?

• Set Age to x, and Fare to y. Do these features correlate?

• Split the above plot by Survived, do you see a pattern in the data?

Testing Hypotheses

If you followed through all above tasks, you now hopefully devel-
oped some intuition regarding which features might have a relation.
The Titanic was a pretty interesting reflection of society around the
1900’s. It opens up some potential for statistical analyses and some
richer measurements. We’ll look at boxplots for this section, and
some very basic pointers on how to run stats in Python.

Figure 9: Boxplot cheat sheet.

Pandas provides the usual boxplot annotations for the mean, me-
dian, standard deviation, min, max, (if you need a refresher on these,
read: link, see Figure 9) and SciPy provides a statistical test for a set
variable, between the classes of the provided subgroup. Through this,
you can test if for example Fare had an effect on your survivability.
Boxplots have a column parameter to select features (should be in a
list format), and by to group. So you can do something like:

df.boxplot(column=['Fare'], by='Survived')

Then finally, scipy.stats also has an implementation for ttests and
the like. Given that we have a lot of unbalanced groups and some
binary data, we’re not going to go in the statistical mess required to
say anything sensible about these here. Just know that the tests are
available. To round off the practical:

Task 4

• Determine a likely ticket price to survive the Titanic.

https://www.ltcconline.net/greenl/courses/201/descstat/mean.htm
http://pandas.pydata.org/pandas-docs/version/0.20/generated/pandas.DataFrame.boxplot.html
https://docs.scipy.org/doc/scipy/reference/stats.html

data mining 9

Solutions

Task 1:

• Given the Titanic Wiki quote, we see that there were 1317 passen-
gers. So we’re missing 1317− 891 passengers (see df.count()).

• This is personal: if you aren’t sure, look at the docs what they
mean, and especially what the values are!

• Well, if you read the quote carefully we know that it’s highly un-
likely that there’s any crew in the dataset. Some features could
however be: Fare (if that would be 0), or Embarked (see Wiki).

Task 2:

• Pclass and Sex.

• Women and children first, ice hit the boat in the lower deck (lower
class). Most of the latter drowned before even making it to any
lifeboats.

Task 3:

• Not more than that they are two discrete features and scatter plots
only work for continuous ones13. 13 See first bit of code below to fix the

error pandas throws.
• Not strong enough to clearly see a visual correlation. You can test

it using scipy.stats.pearsonr. See below for code.

• There’s a few observations we can make, but not necessarily very
clear patterns. It looks like from low-fare payers over 40, the ma-
jority seems to be a non-survivor. We can also see that the high
fare payers generally survived (there’s even a few super high out-
liers with 500+ fare, they survived).

df['Sex'] = pd.get_dummies(df['Sex']) # convert numerical to discrete

make sure to reconstruct the subsets based on the Dataframe with the

now fixed variable encoding

died_subset = df[df['Survived'] == 0]

live_subset = df[df['Survived'] != 0]

plot here

from scipy.stats import pearsonr

pearsonr(df['Age'], df['Fare']) # run df['Age'].fillna(0) before!

Task 4:

• With paid Fair upwards from 50, you’re an outlier if you die.

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.pearsonr.html

	Practical 1
	Refresher
	Understanding your Data
	Solutions

