
Practical 2

by Chris Emmery

In this practical
1 we will focus on making predictions, ascertain- 1 Important Practical Note: If you can-

not answer a task during the practicals
fully, or feel unsure about your answer
(even after the explanation), please ask!
It is very important that you develop
the correct intuitions for each of the
points we discuss here. Sometimes they
just don’t ‘click’ by themselves; they
require a lot of repeated practice and
interpretation, and not every explana-
tion works for everyone. We will be
very happy to answer all your questions
on the Forum or during office hours!

ing the correctness of these predictions, and trying to partly improve
them.

Preparing for Prediction

From what you have seen up until now, you can probably make
a pretty good prediction if someone survived the Titanic. Say that we
offer you this table of people as instances and some of their features:

gender age pclass fare

1 m 51 higher 80

2 f 40 middle 60

3 m 25 lower 10

How would you rank the survivability of these three persons? Now
for a bit more complicated one:

gender age pclass fare

1 m 27 higher ?
2 f 21 middle ?
3 f 35 lower ?

What would you predict is (about) the fair that these three person
bought their tickets for?

2 tilburg university

Data Mining

This is exactly the kind of process we want to automate using
Data Mining techniques. Up until now, we’ve used the Titanic data,
which is pretty simple — can be well understood in historical con-
text by humans, and therefore you can at least say something about
the likelihood of survival. The fares on the other hand require a bit
more of a complex view on the data. You can sort of guess what ball-
park the fares would be in based on the pclass, but the nuances are
harder. These two tasks involve prediction: survived — a discrete
feature (classification), where we have a limited set of options to
choose from, and fare — a continuous feature (regression), where
we’d like to be as close to the actual number as possible.

Figure 1: Formal steps of a Data Mining
(KDD) workflow.

Data Mining is in general the combination of several techniques:

1. Managing your data.

2. A thorough understanding of its contents and potential.

3. The ability to manually select and alter the data to create useful
insights and visualizations.

4. Understanding and applying predictive models that use the full
complexity of the data to create even better insights.

5. Making sure these models are correctly evaluated and being able
to judge their usefulness.

6. Communicating these results.

This course will mostly focus on 2-5. The practicals will try to
train you in 3-5. However, 2 will require your own effort but is the
most important step to the success of actually applying 3-5.

40 50 60 70 80 90 100
150

160

170

180

190

200

Weight (kg)

H
ei

gh
t

(c
m

)

Figure 2: Linear Regression and residu-
als (error). For 2-d (1 feature, 1 target),
the fit of the line is determined by
Y = β0 + β1 · X where β0 is the in-
tercept (or bias coefficient) and β1 the
coefficient for the first feature (deter-
mining the slope of the line).

Making Predictions

For this practical, we are first going to take a model-driven approach
rather than a data-driven one; we’ll try to fit a Linear Regression
model (see Figure 2 for a quick visual refresher) that hopefully pre-
dicts with low error, and see what kind of information we can get
from it. As our data, we’ll be looking at the Boston housing dataset
from Harrison & Rubenfield — collected by the U.S Census Service
concerning housing in the area of Boston Mass. It’s a standard ‘toy’
dataset for regression, given that it only has 506 instances2.

2
Information task data
Data raw github

https://deepblue.lib.umich.edu/bitstream/handle/2027.42/22636/0000186.pdf?sequence=1&isAllowed=y
www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
http://lib.stat.cmu.edu/datasets/boston
https://github.com/tcsai/data-mining/blob/master/data/Housing/housing.csv

data mining 3

If you’re still unsure how prediction and error assessment for this
type of model works, try the following given bias and coefficients:

-0.1080 * crime-rate +

0.0464 * zoned +

0.0206 * industry +

2.6867 * charles +

-17.7666 * nitric-oxide +

3.8099 * rooms +

0.0007 * age +

-1.4756 * employment-center +

0.3061 * radial-highways +

-0.0123 * property-tax +

-0.9527 * pupil-teach-ratio +

0.0093 * proportion-black-families +

-0.5247 * poor-people +

36.4595

You are provided with the following test data:

crime-
rate

zoned industry charles nitric-
oxide

rooms age employ-
ment-
center

radial-
highways

property-
tax

pupil-
teach-
ratio

proportion-
black-
families

poor-
people

0.00632 18 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90 4.98

Task 1

• Use the given coefficients and bias to predict ŷ: the median-value
(by hand) for the feature vectors in the table above (Xtest). See
below for instructions.

Given the true median values3 (so the actual price of the houses) 3

Y = 〈24〉 (1)Y, use the predicted median-value Ŷ to calculate the Root Mean
Squared Error (RMSE) for the median-value in Footnote 3. You do
this by (for each of the feature vectors) subtracting the actual (yi)
from the predicted (ŷi) value, and squaring them. Here, i is the index
of any instance y in Y (and thus X). After, you take the sum over all
these values (should be i = 1 value, because 1 instance), divide it by
the amount of predictions (n = 1), and take the root4. 4

RMSE =

√
∑n

i=1(ŷi − yi)2

n
(2)So, that was a tedious exercise you probably don’t want to do

again. Luckily, we can automate the fitting of the regression line,
making predictions, and calculating RMSE with scikit-learn.

4 tilburg university

Linear Regression with Scikit-Learn

In the following piece of code we are going to recode the col-
umn names5 with more interpretable ones. For an explanation of 5 Which immediately reveal this an old

dataset with little regard for political
correctness.

what’s going on, see sidenote6.

6 To boil it down, new_columns is a
list; an ordered collection of strings
(our column names between quotes).
Because we can look up what the actual
column names represent, and we know
the order in which they occur in the
data (check Table ??), we can manually
recode them in the order that they
occur in. After, we can either overwrite
the names (from_csv() method), or
pass the names directly (read_csv()
method). Either way, we now have
human-readable feature names.

new_columns = ["crime-rate", "zoned", "industry", "charles",

"nitric-oxide", "rooms", "age", "employment-center",

"radial-highways", "property-tax", "pupil-teach-ratio",

"proportion-black-families", "poor-people", "median-value"]

using from_csv

df = pd.DataFrame.from_csv('/srv/data-mining/data/Housing/housing.csv',

index_col=None)

df.columns = new_columns # replace the initial columns with new names

using smarter read_csv

df = pd.read_csv('/srv/data-mining/data/Housing/housing.csv',

index_col=None, names=new_columns, header=0)

df

To set up for predicting anything, we first have to split our data
into features and a target. Hence, we want to put median-value
into its own variable7 Y — and everything else into X. For the label, 7 Please be aware of the mixed use

of the word variable between the
Python variable (a name reference to
a particular object, like an integer, list,
or dataframe) and that used in data
mining (where it is explicitly a feature
vector).

we can just simply select the column from the dataframe and put it in
y, like so:

y = df["median-value"]

Now comes a bit more complicated syntax for selecting everything
but the median-value from the dataframe. For this we can use the
loc() method8. As such: 8 This ‘locates’ (thus subsets) columns

that are according to a certain con-
dition. Our specific condition is
that we want all but median value.
We could manually type out all the
column names, but df.columns !=

"median-value" gives us all the indices
that are not the median value. If you try
the command by itself you’ll see that
it gives a list of True and False when
something meets the condition (is not
median-value). The loc function has
two parts for subsetting: by rows (first
part between [,]) and by columns
(second part). Given that we want all
the rows, we type :, and provide the
indices in the second part.

X = df.loc[:, df.columns != "median-value"]

Now, we want to create a train and test set. We can do this pretty
easily with the following piece of code:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = \

train_test_split(X, y, test_size=0.2, random_state=42)

Here, train_test_split() returns multiple objects, so that’s why
there’s more variable names before the = sign. The splitting does
multiple things under the hood:

• It makes sure the training set (X_train) is split into 80% of the
total data, and the test set (X_test) is 20% (test_size=0.2.

• It stratifies the data, so that the distribution of the target is
the same in the training set as it is in the set. As such, there’s a

https://pandas.pydata.org/pandas-docs/version/0.20/generated/pandas.DataFrame.from_csv.html
https://pandas.pydata.org/pandas-docs/version/0.20/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/version/0.20/generated/pandas.DataFrame.loc.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

data mining 5

proportionally equal amount of houses in both sets (i.e. if the total
data had 10, test now has 2, and train 8).

• It randomly shuffles the data, so that the model can’t infer any-
thing out of the order in which the dataset was composed. As a
result, if we want to be able to reproduce our exact results, we
need to provide a seed to this (random_state=42) so that the ‘ran-
dom’ order is the same if we were to repeat the experiment.

For regression, we first initialize the model (this is where you’d
want to set the parameters). After, we can call the fit() method on
our training set (X_train), and labels (y_train)9. 9 scikit-learn has very comprehen-

sible documentation. Look up the
parameters for the model and its meth-
ods!

from sklearn.linear_model import LinearRegression

lr = LinearRegression()

lr.fit(X_train, y_train)

The classifier is now fitted, or trained. We can first try to interpret
the coefficients. This can be done by calling the coef_ attribute10, 10 See the Attributes section in the

documentation.and then zipping (concatenating)11 it with the column names, like

11 No need to really understand what’s
going on here. Basically, the coefficient
values are ordered according to our fea-
tures, so here we just link the column
names (minus our target) with those
values. Regardless, just remember it as
a way to look at the coefficients.

below:

list(zip(df.columns[:-1], lr.coef_))

Now that the model is trained, we can use it to perform prediction
on our (unseen) test set (X_test), and then evaluate how far the
predicted values are from the actual true values (y_test). We do this
by providing one of the sklearn metrics (mean_squared_error())
with these two variables. Sadly, scikit-learn doesn’t provide the
Root part (to bring the units of error back to that of our actual target),
but we can off-ship that to NumPy (using np.sqrt).

from sklearn.metrics import mean_squared_error

import numpy as np

y_pred = lr.predict(X_test)

rmse_model = np.sqrt(mean_squared_error(y_test, y_pred))

rmse_model

Interpret all the output we have generated up until now. Then finally,
solve:

Task 2

• Fit Linear Regression on the Boston Housing dataset, interpret the
coefficients. What would these mean?

• How do we asses if the model has a) actually learned something,
and b) will generalize well?

https://en.wikipedia.org/wiki/Random_seed
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression.fit
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression.fit
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html

6 tilburg university

Further Analysis

With our model-driven results we have some empirical indi-
cation of how well we can predict a house price in Boston given the
features (and data) we were provided with. Note that even if very
successful, this shouldn’t be presented as a general model of predict-
ing house prizes. The final scores we are looking at are constrained
by:

• Our data (amount and sample) — we have Boston housing data, and arguably a very small sample. One
could question how well that translates to other cities, different varieties of houses, etc. Can we predict
rural areas? Residential areas with many expensive houses?

• Our model (algorithm and parameters) — we chose for the simplest implementation of regression; Lin-
ear Regression. We did not tune the algorithm to perform better, nor have we thought about choosing
other models that might be better suited for the type of data we are dealing with.

• Our evaluation (scheme and scores) — while RMSE gives a fair indication of how well a particular
model approximates the actual pattern underlying the data, we do need to realize how much data we
are using for training and testing. We might also have to look at some other evaluation metrics to get a
better indication (like MAE). Moreover, if we will tune any of our parameters, we need to consider do-
ing that on a different data split altogether. The latter we’re not going into for this particular practical.

Anyway, let’s get into some analysis. If we want a nicer visualiza-
tion of the coefficients, we can simply dump them in a dataframe and
get a bar plot going. Like so:

cdf = pd.DataFrame([list(lr.coef_)], columns=df.columns[:-1])

plt = cdf.plot(figsize=(15,5), kind='bar', legend=True)

plt.xaxis.set_visible(False)

We can control the size to see the bars a bit better using figsize,
where the first part of figsize=(,) is the width, and the second
the height. Because there are no values on the x-axis of the plot, we
can just turn that off. For this we have to store the plot in a variable
first (plt), after which we can manipulate the visibility (last line).
Mostly you will see how much (visual) impact the nitric-oxide

feature has in the model that we fitted. Rooms also seems to have
quite an impact — both should be somewhat in accordance with your
intuition about what controls a house price.

Baseline

Up until now we’ve only looked at the test scores; we don’t ac-
tually know if our model actually learned something (i.e. if it’s not

data mining 7

making some stupid predictions). An easy way to get a baseline score
for a regression model is to take an mean baseline. For this, we can
simply take:

df["median-value"].mean()

We’ll have to make this prediction as many times as we have test
items though, so we can take the length (len) of y_test, and fill a list
up with as many times the mean. This looks like:

bl = [df["median-value"].mean()] * len(y_test)

bl

Now we have 502 entries with the exact same baseline prediction,
great. We can compare it with the true y_test and see how far we are
off:

rmse_bl = np.sqrt(mean_squared_error(y_test, bl))

rmse_bl

Task 3

• Interpret the baseline score and compare it to our previous RMSE
score. How would you say the model is performing?

• Looking at the error, and median-value, determine if the model is
useful in practice.

Post-hoc Feature Analysis

The regression coefficients have given us some indication of
feature importance. We know which one affect the price positively,
and which do negatively — and to what intensity. But how much
does that correspond to what we would expect from a general corre-
lation between that specific feature, and our target? Let’s find out:

from scipy.stats import pearsonr

df.plot(x='nitric-oxide', y='median-value', kind='scatter')

pearsonr(df['nitric-oxide'], df['median-value'])

Previously, you could have observed nitric-oxide to have a strong
negative effect. According to our model, weighing even heavier than
the amount of rooms. Let’s inspect that one as well:

df.plot(x='rooms', y='median-value', kind='scatter')

pearsonr(df['rooms'], df['median-value'])

8 tilburg university

Task 4

• Interpreting the plots (and more importantly the correlations), do
these correspond to the regression coefficients?

• What is the reason behind this?

More Plots

As we’re looking at plots anways, let’s try to see if we can get a
bit more insight into the Housing dataset. For example, it’s cheap to
live in polluted areas:

df.plot(x='nitric-oxide', y='median-value', c='property-tax',

colormap='Oranges', kind='scatter')

Older buildings are in less crowded areas:

df.plot(x='zoned', y='pupil-teach-ratio', c='age',

colormap='Blues', kind='scatter')

Why Normalize?

As we arrive at boxplots, hopefully you’ll see some oddities and
issues with the following plot12: 12 Note that rot is used to rotate the

labels on the x-axis by 90 degrees to fit
the names.df.boxplot(figsize=(20,5), rot=90)

Most of the plots are barely visible, because the ranges of the feature
values differ tremendously. There’s quite a simple fix for that, which
is normalizing by z-score.

df_norm = (df - df.mean()) / (df.max() - df.min())

df_norm.boxplot(figsize=(20,5), rot=90)

In addition to fixing our boxplot, standardizing or normalizing also
potentially improves algorithms (as the space they need to fit a line in
is greatly reduced). Let’s see how it affects ours, start with:

X = df_norm.loc[:, df_norm.columns != "median-value"]

Task 5

• From here on out you are on your own. Use the new normal-
ized X13 to get a rmse_norm and compare it to the baseline and 13 Repeat all steps we did before from

there on out.rmse_model. How much did we improve?

https://en.wikipedia.org/wiki/Standard_score

data mining 9

Solutions

Task 1:

• The predicted value should be around 30. This makes the RMSE
around 6.

Task 2:

• Positive means it increases the house price by some factor, negative
coefficients mean it decreases the price by this factor. Note that
they are on different scales though!

• a) we would need some ‘stupid’ baseline that we can use to predict
without learning anything (like the mean of all the values that we
saw in our training dataset). b) we have a test set, so we know the
performance on unseen data. Actual generalizability isn’t easy
to comment on with small datasets. The more instances we have
(especially across time, these are housing market dynamics mind
you), the more confident we can be that it still holds.

Task 3:

• Baseline error should be around 8.6, whilst our model error is
around 4.9. From this, we can at least conclude that is quite a bit
better than baseline — the model is at least learning some pattern
in the data. We have to further interpret the error to make an
actual quality estimate, however. See below.

• Let’s see what this median-value actually represents. The docu-
mentation gives the following info: “Median value of owner-occupied
homes in $ 1000’s“. This means that per house we are generally
about $5000 (plus or minus) off. Looking at df["median-value"]
.mean(), it can be observed that the average house costs about $
22500 with a standard deviation (df["median-value"].std()) of
about $ 9200. I’m not in the house selling business, but if I would
have a reasonable chance of losing about $ 5000 (when a lower
price is predicted) — I’d not expect to run much profit given the
standard deviation. You can further inspect y_pred and y_test

(using e.g. np.mean, or just outputting the values) to see how far
the model is off in some specific cases (spoiler: on average it un-
dershoots the prices).

10 tilburg university

Task 4:

• No, they don’t. There’s a way stronger correlation between rooms

and median-value than the negative for nitric-oxide.

• Linear Regression models multiple dimensions simultaneously
when adding all features. As such, some features might be weighted
lower (e.g. if their values have a smaller range). You can try the
boxplot again after normalizing to get a ‘better’ representation.

Task 5:

• RMSE for the normalized model should be exactly the same. Note
that this applies to standard features; when later we go into inter-
action features, the importance will become more evident.

	Practical 2
	Preparing for Prediction
	Making Predictions
	Further Analysis
	Solutions

