
Practical 4

by Chris Emmery

This practical1 will mostly focus on discussing the previous one — 1 Important Practical Note: If you can-
not answer a task during the practicals
fully, or feel unsure about your answer
(even after the explanation), please ask!
It is very important that you develop
the correct intuitions for each of the
points we discuss here. Sometimes they
just don’t ‘click’ by themselves; they
require a lot of repeated practice and
interpretation, and not every explana-
tion works for everyone. We will be
very happy to answer all your questions
on the Forum or office hours!

creating some insights and intuitions about this particular dataset,
and hopefully will help you in understanding some of the mate-
rial you might have had a hard time with in the previous practical.
We will dive into how datasets can be misleading, (hopefully you’ll
agree) in somewhat of light-hearted fashion.

Setting up for Predictions

When acquiring data yourself, there’s always a clear task or goal.
However, when working with pre-made, or pre-collected data—
which is commonly the case in industry applications—it is often your
goal to discover purpose in data. Moreover, it might also be the case
that you already have a particular goal in mind, but are still able to
find surprising patterns with some thorough analysis.

As is often mentioned, collection, cleaning, and general prepara-
tion of data covers the majority of the effort in Data Science research.
Learning about common issues in the mess that is ’in-the-wild’ data
(and ways to resolve them quickest) takes practice and patience. Even
when dealing with pre-made data, as you have seen in the previous
practical, the combination of your data and tools can pose quite the
obstruction on the way to your final station: doing predictions.

There’s a manifold of different issues that arise in the process
described above, we will cover the following in this practical:

• Getting your data in the correct data types.

• Plotting to gain extra insight and identifying anomalies in data.

• Preprocessing to improve the information in your features.

Predictions we will leave for later — this practical covers the ’dirty’
Data Mining work.

2 tilburg university

Let’s get started.

Interpreting Raw Data

When data is in an unfamiliar format (which is almost always, unless
you collected and stored it yourself), a good first step is opening
up the files in some plain text editor (e.g. Notepad for Windows,
TextEdit for Mac, or whatever your distro provides for Linux). You
can also choose to do this via Jupyter / terminal for example:

!head --lines=2 /srv/data-mining/data/IMDB/imdb.csv

The first line (starting with color, ending with ,quality) are the
headers of the .csv file, the second line (starting with Color, end-
ing with ,good) is the first instance. Naturally, using a package like
Pandas for reading and manipulating such data structures makes the
visual interpretation much easier.

import pandas as pd

df = pd.DataFrame.from_csv('/srv/data-mining/data/IMDB/imdb.csv', index_col=None)

df.head(n=1)

Exploring the Data Types

Pandas does somewhat of a lazy reading of data. When using from_csv,
or not setting the correct options in read_csv — it’s going to try to
naively interpret the features, and doesn’t warn you about for exam-
ple mixed values2. A priori, you don’t know anything of this dataset, 2 This for example happens when

you have mixed data types, such
as numbers and ? as missing value
indicator. It will assume ? is just a
regular value, and you end up with an
object type column.

so finding out the hard way is common. Let’s see what happens if we
don’t handle missing values in our reader:

df['gross'].head()

Pandas sees this as an object, and not an integer, or float, as we
would prefer. This is why we’d generally want to use pd.read_csv

for this, as we can indicate the encoding of the missing values. As
such:

df = pd.read_csv('/srv/data-mining/data/IMDB/imdb.csv', index_col=None, na_values='?')

df['gross'].head()

However, notice that we could think of this fix only because we
either encountered the ? issue before, or did some manual analysis of
the data. There might be other values still messing up our data types.
Let’s check to be completely sure:

data mining 3

df.dtypes

Task 1

• Given the intuitions that you have about the features — are the
datatypes correct?

• What is the difference between float64 and int64? Can you find
what causes this for features that likely aren’t a floating point
number?

Plotting

Now that all our features are in place, let’s start plotting some things:

%matplotlib inline

import warnings

warnings.filterwarnings('ignore')

Plots are a great way to gain extra insight in data. However, in
order to produce them, usually some data aggregation / filtering
methods need to be employed. While there are numerous ways to
visualize this small dataset to bits, we’ll look at a few different ones
and how it allows us to critically analyse a particular dataset that
we’re not familiar with. After all, while the features are somewhat
self-explanatory, we don’t know how they were collected, and if
we can trust them. First, we’ll take a look at the ’most popular first
actors’.

p_df = df.drop_duplicates('actor_1_name')

p_df = p_df.sort_values('actor_1_facebook_likes', ascending=False)

p_df = p_df.head(50)

p_df.plot(x='actor_1_name', y='actor_1_facebook_likes',

kind='bar', figsize=(20, 5))

Code Explained:

• Actors can play in multiple movies,
but their facebook likes will be the
same. Therefore, we drop duplicate
entries of actor_1_name (note that
this only makes sense for this
particular plot, that’s why we’re
subsetting).

• Sort these values based on
actor_1_facebook_likes, in a
descending fashion (i.e. from large
to small).

• To not overflow the plot, we only
take the first 50.

• Finally we plot our sorted, subsetted
data.

Mysterious Popularity

What can we get from this plot? I personally found it interesting that
Darcy Donavan has so many facebook likes (full disclosure, mostly
because I didn’t know who she is).

Task 2

• Look up Darcy Donavan and Matthew Ziff on IMDB. Do you think
their roles would make them the most popular actors on facebook?

4 tilburg university

• Look them up on facebook. Do the likes of the plot match that of
Facebook?

Now, let’s inspect the movies they were supposedly starring in as
first actor:

df[df['actor_1_name'] == 'Darcy-Donavan'][

['movie_title', 'actor_1_name',

'actor_2_name', 'actor_1_facebook_likes']]
Code Explained: the first part subsets
the entries to only those where ‘ac-
tor_1_name‘ is ‘Darcy-Donavan‘, and
then the second part selects the rows.

Task 3

• Look up the cast of Anchorman on IMDB. Where should Will
Ferell be according to the IMDB ordering?

• Are the actors perhaps ordered alphabetically?

• Are the likes for Will Ferell correct?

If you’ve seen the video lecture Working with Text Data: Part

II, you know frequencies in human behaviour often follow a Zip-
fian (or Power Law) distribution. The facebook pages that are very
popular should, assuming this law holds, have exponentially more
likes than the ones that are a little less popular. So much so, that on a
double logarithmic scale, they look almost linear. Run the following
code:

l_df = df['actor_1_facebook_likes'].sort_values(ascending=False)

l_df = l_df.reset_index()

l_df.plot(y='actor_1_facebook_likes', kind='line', loglog=True)

Task 4

• Do likes follow a Zipfian distribution?

• Why / why not?

Inspecting Correlations

Anyway, enough about the facebook likes, let’s try to find out some
correlations. We can try to plot all of them at once with the scatter_matrix

function, but it does take quite a while to render. Try if you like:

pd.scatter_matrix(df, alpha=0.2, figsize=(50, 50), diagonal='kde')

Some of the more interesting ones (in my opinion) would be these:

data mining 5

Are movies getting worse?

df.plot(kind='scatter', x='title_year', y='imdb_score')

--- new cell ---

from scipy.stats import pearsonr

corr = pearsonr(df['title_year'].fillna(0), df['imdb_score'].fillna(0))

print("r={0}, p={1}".format(*corr))

Are people more inclined to review good movies?

df.plot(kind='scatter', x='num_user_for_reviews', y='imdb_score')

--- new cell ---

from scipy.stats import pearsonr

corr = pearsonr(df['num_user_for_reviews'].fillna(0), df['imdb_score'].fillna(0))

print("r={0}, p={1}".format(*corr))

Does money generate more money?

df.plot(kind='scatter', x='gross', y='budget')

--- new cell ---

from scipy.stats import pearsonr

corr = pearsonr(df['duration'].fillna(0), df['gross'].fillna(0))

print("r={0}, p={1}".format(*corr))

Now, hopefully we can agree these questions above are way over-
stated. There’s no way a sample of just 5000 movies is going to show
us anything definitive enough to answer these questions. As you can
see from the distributions like the one below, the set is very biased to-
wards more recent movies. At the very least, it shows you how to use
scatter plots informatively. Let’s for consider the final gross*budget
plot in particular. There are a few enormous outliers both in budget
as well as gross that beg for further inspection.

df['title_year'].plot(kind='kde')

We Want More Money!

So, what about these outliers. If we just read from the plot, we know
exactly in what range we need to find the highest grossing movies:

df[df['gross'] > 6 * 1e8][['movie_title', 'gross', 'budget']

].sort_values('gross', ascending=False)

Code Explained: the first part subsets
the entries to only those where gross

is higher than 600000000, and then the
second part selects the rows. Lastly,
they are sorted by gross (descending).

Now, Avatar does rank amongst the most expensive films ever, but
should also be the highest-grossing ones. So let’s confirm if this is the
case.

https://en.wikipedia.org/wiki/List_of_most_expensive_films
https://en.wikipedia.org/wiki/List_of_highest-grossing_films

6 tilburg university

df[df['budget'] > 0.2*1e10][['movie_title', 'gross', 'budget']

].sort_values('budget', ascending=False)

Task 5

• Look up the movies on IMDB, do you notice something about
their movie posters?

• Why are these movies generating outliers?

• How would you tackle this?

Popular Genres

Now we’re going to use some boxplots to see if there are certain
genres that are particularly popular.

df['genres'] = df['genres'].apply(lambda x: x.split('|')[0])

df.boxplot(column=['imdb_score'], by='genres', figsize=(20, 4))

This gives us information regarding which genre has the most
outliers in terms of good (or bad score), which ones have the highest
variance, overall best scores, etc. For example, Romance seems to get
very consistent scores between 5-7 whereas ’Family’ seems to have
many different scores across the board. Popularity of a genre also
comes into play here though:

df.boxplot(column=['num_user_for_reviews'], by='genres', figsize=(20, 10))

Task 6

• Which genre overall gets best reviews?

• Look at the second plot. For this particular genre, what can you
deduce from the plot?

Finally, just to show what pivot tables are3 and how you can 3 Excel people are big fans of these.

colour them. If you have multiple categories that you want to com-
pare certain data on (just more than just raw count), you can use
the pivot_table() method. You can specify a categorical index,
column(s), and the values you want to show in this table. For conve-
nient sorting of quality, I replaced them by numbers. Note that due
to the mixed currencies, the values aren’t particularly informative —
but there are some funny inferences to be made, such as that in the
UK more budget seems to yield lower scores, and in the USA it’s the
other way around (scroll all the way to the right).

See:

https://pandas.pydata.org/pandas-docs/version/0.20/generated/pandas.DataFrame.pivot_table.html

data mining 7

df.replace({"quality": {"very-bad": 1, "bad": 2, "okay": 3,

"good": 4, "very-good": 5}}, inplace=True)

df.pivot_table(index='quality', columns='country',

values='budget').style.background_gradient(cmap='Blues')

Preprocessing

Now that we’ve looked at some interesting characteristics of this
particular dataset, I’ll discuss a few methods of how to enrich, and
fix some of the errors that we found. Now again, please keep in mind
that there’s many more things that can be done — I’m just showing
a few. For most of the ’actual’ preprocessing, you need a bit more
scripting knowledge. An example of that could be identifying the
conversion rate of the ‘gross‘ values based on the country (you’d
need some API that does the conversion to dollars).

Dealing with Highly Unique Features

As we’ve discussed in the Text-Mining-related video lectures, lan-
guage is often represented as text vectors. However, what happens
when we’re dealing with actor names? These are not actually embed-
ded in a piece of text, and we can’t split them into separate tokens
(chances of the same name being an important feature are slim). But,
it does contain some information, intuitively at least. When you see
names such as e.g. Ryan Gosling, Dave Bautista, Robin Wright, Jared
Leto, and Harrison Ford on one poster (totally random composition,
honest), you could make an educated guess that there needs to be
something very wrong with a movie for it to get a low IMDB score.
So, we associate some quality with certain names.

A cheap way to convey this kind of world knowledge is replacing
the actor names with the average of the imdb scores for the movies
they have starred in. This is actually quite a straight-forward opera-
tion in pandas:

df.groupby('actor_1_name')['imdb_score'].mean().sort_values(

ascending=False).head(10)

However, mean score might not be enough. We would also want
to introduce some reliability score. The way I solved it here is defi-
nitely not the most elegant, but at least it accounts for the fact that (a)
popularity is important (e.g. starting in a lot of movies), and (b) the
scores of those movies are important. Now note that this metric can
be offset by just being old (see most of the listed actors below) AND
popular. Though, by using the sum over the z-scores for movies
scores an actor starred in, we’re at least provided with some indica-
tion how consistently ’good’ an actor is.

https://en.wikipedia.org/wiki/Standard_score

8 tilburg university

from scipy.stats.mstats import zscore

df['imdb_z'] = zscore(df['imdb_score'])

pd.Series(df.groupby('actor_1_name')['imdb_z'].sum()

).sort_values(ascending=False).head(10)

Now, to me this at least looks like a fair list. Note that when we don’t
take the amount of movies into consideration, we get some very
different results:

pd.Series(df.groupby('actor_1_name')['imdb_z'].mean()

).sort_values(ascending=False).head(10)

Dealing with Text Data

So, what do we do when we do have text data? While we could set
up a prediction task for the movie score based on the plot alone,
this dataset doesn’t provide us with the rich textual representation
required for a proper computational linguistics approach. Instead,
we’ll take the keywords from the plot:

df['plot_keywords'].head(5)

We’ll have to do two things here: split the different keywords, and
then convert them into word counts. Scikit-learn offers a CountVectorizer

to do just this. It even detects | out of the box as token boundary! We
only have to make sure that the NaNs are replaced by an empty
string:

df['plot_keywords'] = df['plot_keywords'].fillna(' ')

Note that the transformation returns a sparse matrix, if we after
want to view it in a DataFrame format again, it needs to be a dense
matrix (or we have to do some special pandas loading procedure for
sparse matrices). To restrict the words to frequent ones only (and our
matrix not to blow up), we can use max_features. After, you can join
this word matrix to your original DataFrame if you’d prefer, or even
do something fancier like using the TfidfVectorizer. However, to
keep further interpretation in this practical straight-forward, we’ll not
be doing this.

from sklearn.feature_extraction.text import CountVectorizer

cv = CountVectorizer(max_features=500)

pd.DataFrame(cv.fit_transform(df['plot_keywords']).todense(),

columns=sorted(cv.vocabulary_))

data mining 9

Dealing with Missing Values

We’ve discussed them a few times, and have so far just replaced them
with some standard value (i.e. 0 or ’ ’), but how do we correctly
deal with them?

df['gross'].head(5)

First it’s important to make a few considerations:

• Does it make sense to fill the missing values? In the case of text, what are you going to fill it with? It’s
easier to just fix the problem or ignore the document altogether.

• Are the missing values random? If it’s just some small error, it’s not going to influence your analy-
sis that much to just get rid of the entries that have missing values. That is, given the fact that there’s
enough data.

• If the missing values are not random, you can choose a few strategies to fix them without hurting the
overall vector representation too much:

– Impute: replaces the missing values with some value inferred from the data (e.g. the mean/median
feature value, or the majority category).

– Estimate: replace the missing values with some value learned from the data (e.g. by using Singular
Value Decomposition, K-NN or Naive Bayes).

Estimation often proves effective when doing predictions af-
terwards, even with up to half of values missing. However, using
parametrized models also introduces more complexity in your
pipeline, so it’s worthwhile to consider if time is a factor, and if
there’s enough resources (in terms of data).

Imputing

Doing this column-wise in pandas requires a bit of effort for making
compatible with scikit-learn’s Imputer. First, we need to specify
axis=1 (to make it column-wise). Moreover, scikit-learn expects a
matrix, so if we only want to impute one column, we need to wrap it
between brackets, and after only select the 0th element. Like so:

from sklearn.preprocessing import Imputer

imp = Imputer(strategy='mean', axis=1)

df['gross'] = imp.fit_transform([df['gross']])[0]

As we can see, it’s done:

df['gross'].head(5)

A less flexible, pure pandas implementation would be as follows:

10 tilburg university

df['gross'] = df['gross'].fillna(df['gross'].mean())

Dealing with Discrete (Categorical) Data

Sadly, there’s no straight-forward way to deal with categorical
data. If we want to use any scikit-learn model, we need the whole
dataframe to be numeric, and have to remove all missing values. In
turn, if we want to impute on most frequent categories, we have to
count their occurrences, sort them by most frequent, take the top
entry, and get its index value. As such:

df['genres'].value_counts()

--- new cell ---

df['genres'].value_counts()[:1].index[0]

Now, to both impute numerical and categorical values, we need a
small piece of code rather than a one-liner. Pandas has a ’category’
type, that allows for easy conversion to numbers. We’ll use that in
combination with the two other fillna lines that we discussed before
to fill the missing values of all features:

for column, dtype in df.dtypes.to_dict().items(): # for each column, dtype pair in the dataframe

if dtype == 'object': # if the column is an object (thus discrete)

df[column] = df[column].fillna(df[column].value_counts()[:1].index[0]) # fill with most common

cats = df[column].astype('category') # convert to category

df[column] = cats.cat.codes # use the category indices to convert to numeric

else: # if the column is something else (thus numeric)

df[column] = df[column].fillna(df[column].mean()) # take the mean Please note that this is quite an ad-
vanced application — don’t worry if it
doesn’t make sense code-wise.

Scaling

With all the missing values out of the way, we need to standardize
our feature space. Most models benefit greatly from a Gaussian dis-
tribution, and therefore we can use scikit-learn’s StandardScaler to
achieve this. And while we’re at it, let’s immediately dump the whole
thing in X and set our y:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

y = df.pop('quality')

X = scaler.fit_transform(df)

So are we finally done for predictions now? Not quite yet.

data mining 11

Evaluation Set-up

Now our DataFrame is ok, and we can apply our model to it. How-
ever, we first need to set up baselines and inspect their behaviour.
Let’s start by at least making our train / test set-up:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y)

Notice that because we’re not doing any parameter tuning, we
don’t require a validation set yet. Simple classification models such
as Naive Bayes or Logistic Regression (without polynomial features,
kernel transformations, or parameter tuning) make good first base-
lines. And, of course, we’d also need a ’dumb’ majority baseline. The
latter we can construct like so:

ŷ_baseline = [y.value_counts()[:1].index[0]] * len(y)

Notice that this is the same ’most common class’ as we used for
the imputation of categories. We then create a list of the length of the
initial label, filled with this value. That’s our majority baseline. We
can quickly evaluate its performance like so:

from sklearn.metrics import classification_report

print(classification_report(y, ŷ_baseline))

Now for the ’regular’ baseline, let’s use LogisticRegression:

from sklearn.linear_model import LogisticRegression

lr = LogisticRegression()

lr.fit(X_train, y_train)

ŷ_test = lr.predict(X_test)

And evaluate:

from sklearn.metrics import classification_report

print(classification_report(y_test, ŷ_test))

Well, aren’t we doing amazing? This is the point where some loud
alarm bells need to start ringing. Why?

• We determined that most of the features are actually pretty use-
less; they don’t accurately reflect the ’truth’ or contain mixed infor-
mation.

• The amount of information we have available is quite limited, and
would intuitively not be enough to guess movie quality this well
(although, of course this is speculation at this point).

12 tilburg university

• We ran a vanilla model, no tuning, no nothing, and we’re doing
almost perfect on the test set.

Let’s see what the model is paying attention to:

list(zip(df.columns[:-1], lr.coef_[2])) LogisticRegression has coefficients per
class, so this would be for class ’3’.

Well, well, apparently imdb_score is an amazing predictor for
quality. Let’s see why:

pd.concat([df['imdb_score'], y], axis=1).plot(kind='scatter', x='imdb_score', y='quality')

Task 7

• What is happening here?

• Try removing the polluting feature with del df[’featurename’]

and run the experiments again.

data mining 13

Solutions

Task 1:

• Not all. Some are floating point numbers (decimal numbers),
whilst they can’t have ‘halves’ like facenumber in poster.

• Try df[’facenumber_in_poster’].value_counts().plot(kind=’bar’).

Task 2:

• No, definitely not for mr. Ziff, who is a stuntman.

• This seems to be the Darcy Donavan facebook page, worth about
3.2M likes. That’s not nearly the >600M that were suggested here.
Matthew who? only has 54K likes on facebook.

Task 3:

• Anchorman should have had Will Ferrell as first actor. Darcy Don-
avan is actually last on the initial Cast List page.

• Can’t be Alphabetically determined either, because then Christina
Applegate would have definitely been higher.

• Looking at the likes, the IMDB sorting might also not be trusted,
as Will Ferrell only has 11M likes, and not > 600M. So I guess it
remains a mystery how these names have been determined.

Task 4:

• Not really, no.

• Due to this small sample, and the data mostly being biased to-
wards more popular actors, there’s no ’heavy tail’ with many low
frequencies.

Task 5:

• The “‘most expensive movies”’ are South Korean, Hungarian and
Japanese movies.

• As it turns out, the budget feature for IMDB lists local currency. As
a result, using this as a feature will probably be quite noisy (lot of
inaccurate information).

https://www.facebook.com/OfficialDarcyDonavan
http://www.imdb.com/name/nm3556158/?ref_=fn_al_nm_1

14 tilburg university

• You could look up the country name and match some currency
database to convert to dollars, but you’d have to have historic
information.

Task 6:

• Documentaries (at least visually) look like the best bets for decent
reviews.

• Seems like that a very particular crowd reviews documentaries
between a particular range. Which—if you think about people
who watch documentaries, and in which circumstances—it makes
some sense.

Task 7:

• Hopefully, with this you will see that quality is actually based on
imdb_score: 1-3 = 1, 3-5 = 2, 5-7 = 3, 7-8 = 4, 8-10 = 5. The model
will see this, and use this feature. Given that it’s just a derivation
from imdb_score, we don’t want to use it, as it is a case of feature
contamination / pollution.

• You should get much lower scores, but the coefficients should
make more sense.

	Practical 4
	Setting up for Predictions
	Plotting
	Preprocessing
	Evaluation Set-up
	Solutions

